Skip to main content

Moving Brain-Controlled Devices Outside the Lab: Principles and Applications

  • Chapter
Recent Progress in Brain and Cognitive Engineering

Abstract

This chapter provides an overview of the functionality and the underlying principles of the brain-computer interfaces (BCI) developed by the Chair in Non-Invasive Brain-Machine Interface (CNBI) of the Swiss Federal Institute of Technology (EPFL), as well as exemplary applications where those have been successfully evaluated. Our laboratory mainly develops non-invasive BCI systems based on electroencephalographic (EEG) signals and, thus, devoid of medical hazards, real-time, portable, relatively low-cost and minimally obtrusive. Our research is pushing forward asynchronous paradigms offering a spontaneous, user-driven and largely ecological interaction. Furthermore, we stand on the machine-learning way to BCI with emphasis on personalization, configurability and adaptability, coupled with mutual learning training protocols, so that elaborate signal processing and pattern recognition methods are optimally combined with the user’s learnable modulation of brain signals towards high and robust performances and universal usability. Additionally, cognitive mental state monitoring is employed to shape or refine the interaction. Shared-control approaches allow smart, context-aware robotics to complement the BCI channel for more fine-grained control and reduction of the user’s mental workload. Last but not least, hybrid BCI designs exploit additional physiological signals to augment the BCI modality and enrich the control paradigm, thus also exploiting potential residual capabilities of disabled end-users.

The applicability and effectiveness of the aforementioned principles is hereby demonstrated in four exemplary applications evaluated with both able-bodied and motor-disabled end-users. These applications include a hybrid, motor imagery (MI)-based speller, a telepresence robot equipped with shared-control, cognitive mental state monitoring paradigms able to recognize and correct errors, and, finally, a car driving application where a passive BCI enabled on a smart car assists towards increased safety and improved driving experience. Remarkably, our results show that the performance of end-users with disabilities was similar to that of a group of healthy users, who were more familiar with the experiment and the environment. This demonstrates that end-users are able to successfully use BCI technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This Section follows closely a prior published paper by the authors [66].

  2. 2.

    This Section follows closely a prior published paper by the authors [45].

  3. 3.

    This Section follows closely a prior published paper by the authors [34].

  4. 4.

    This Section follows closely prior published papers by the authors [27, 37].

References

  1. Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G (2010) Toward a hybrid brain–computer interface based on imagined movement and visual attention. J Neural Eng 7:026007

    Article  CAS  Google Scholar 

  2. Aloise F, Schettini F, Aricó P, Leotta F, Salinari S, Mattia D, Babiloni F, Cincotti F (2011) P300-based brain-computer interface for environmental control: an asynchronous approach. J Neural Eng 8:025025

    Article  CAS  PubMed  Google Scholar 

  3. Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2011) A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interfaces. Clin EEG Neurosci 42(4):253–258

    Article  PubMed  Google Scholar 

  4. Biasiucci A, Leeb R, Al-Khodairy A, Buhlmann V, Millán JdR (2013) Motor recovery after stroke by means of BCI-guided functional electrical stimulation. In: Proceedings of 5th international BCI meeting, Asilomar, California, US

    Google Scholar 

  5. Billinger M, Brunner C, Müller-Putz GR (2013) Single-trial connectivity estimation for classification of motor imagery data. J Neural Eng 10(4):046006

    Article  PubMed  Google Scholar 

  6. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  CAS  PubMed  Google Scholar 

  7. Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller K-R, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng 11:127–131

    Article  PubMed  Google Scholar 

  8. Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, Maeder C, Ramsey L, Sturm I, Curio G et al (2010) The Berlin brain–computer interface: non-medical uses of BCI technology. Front Neurosci 4:198

    Article  PubMed Central  PubMed  Google Scholar 

  9. Carlson T, Demiris Y (2008) Human-wheelchair collaboration through prediction of intention and adaptive assistance. In: Proceedings of IEEE international conference on robotics and automation, Pasadena, pp 3926–3931

    Google Scholar 

  10. Carlson T, Millán JdR (2013) Brain–controlled wheelchairs: a robotic architecture. IEEE Robot Autom Mag 20(1):65–73

    Article  Google Scholar 

  11. Carlson T, Leeb R, Chavarriaga R, Millán JdR (2012) Online modulation of the level of assistance in shared control systems. In: Proceedings of IEEE international conference on systems man and cybernetics, Seoul, pp 3321–3326

    Google Scholar 

  12. Carmena JM (2013) Advances in neuroprosthetic learning and control. PLoS Biol 11(5):e1001561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chavarriaga R, Millán JdR (2010) Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 18(4):381–388

    Article  PubMed  Google Scholar 

  14. Chavarriaga R, Perrin X, Siegwart R, Millán JdR (2012) Anticipation- and error-related EEG signals during realistic human-machine interaction: a study on visual and tactile feedback. In: Proceedings of 34th annual international conference of the IEEE engineering in medicine and biology society, San Diego, pp 6723–6726

    Google Scholar 

  15. Chavarriaga R, Gheorghe L, Zhang H, Khaliliardali Z, Millán JdR (2013) Detecting cognitive states for enhancing driving experience. In: Proceedings of 5th international brain-computer interface meeting 2013, Pacific Grove, Asilomar, California, US

    Google Scholar 

  16. Chavarriaga R, Sobolewski A, Millán JdR (2014) Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208

    Article  PubMed Central  PubMed  Google Scholar 

  17. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed Central  PubMed  Google Scholar 

  18. Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77(1–2):45–52

    Article  CAS  PubMed  Google Scholar 

  19. de Negueruela C, Broschart M, Menon C, Millán JdR (2010) Brain-computer interfaces for space applications. J Pers Ubiquitous Comput 15(5):527–537

    Article  Google Scholar 

  20. Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316

    Article  PubMed  Google Scholar 

  21. Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012) Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59:519–529

    Article  PubMed  Google Scholar 

  22. Ferrez PW, Millán JdR (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55:923–929

    Article  PubMed  Google Scholar 

  23. Ferrez PW, Millán JdR (2008) Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. In: Proceedings of 4th international brain-computer interface workshop and training course, Graz, pp 197–202

    Google Scholar 

  24. Galán F, Ferrez PW, Oliva F, Guàrdia J, Millán JdR (2007) Feature extraction for multi-class BCI using canonical variates analysis. In: Proceedings of IEEE international symposium on intelligent signal processing, Alcalá de Henares

    Book  Google Scholar 

  25. Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán JdR (2008) A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119(9):2159–2169

    Article  PubMed  Google Scholar 

  26. Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng 11:137–140

    Article  PubMed  Google Scholar 

  27. Gheorghe LA, Chavarriaga R, Millán JdR (2013) Steering timing prediction in a driving simulator task. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, Japan, pp 6913–6916

    Google Scholar 

  28. Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11:145–147

    Article  CAS  PubMed  Google Scholar 

  29. Haufe S, Treder MS, Gugler MF, Sagebaum M, Curio G, Blankertz B (2011) EEG potentials predict upcoming emergency brakings during simulated driving. J Neural Eng 8(5):056001

    Article  PubMed  Google Scholar 

  30. Haufe S, Kim J-W, Kim I-H, Sonnleitner A, Schrauf M, Curio G, Blankertz B (2014) Electrophysiology-based detection of emergency braking intention in real-world driving. J Neural Eng 11:056011

    Article  PubMed  Google Scholar 

  31. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Höhne J, Holz E, Staiger-Sälzer P, Müller K-R, Kübler A, Tangermann M (2014) Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution. PLoS ONE 9:e104854

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hu TC, Tucker AC (1971) Optimal computer search trees and variable-length alphabetical codes. SIAM J Appl Math 21(4):514–532

    Article  Google Scholar 

  34. Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán JdR (2014) Latency correction of error potentials between different experiments reduces calibration time for single-trial classification. J Neural Eng 11:036005

    Article  CAS  PubMed  Google Scholar 

  35. Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9(6):735–739

    Article  CAS  PubMed  Google Scholar 

  36. Kaufmann T, Holz EM, Kübler A (2013) Comparison of tactile, auditory and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci 7:129

    Article  PubMed Central  PubMed  Google Scholar 

  37. Khaliliardali Z, Chavarriaga R, Gheorghe LA, Millán JdR (2012) Detection of anticipatory brain potentials during car driving. In: Proceedings of 34th annual international conference of the IEEE engineering in medicine and biology society, San Diego, vol 2012, pp 3829–3832

    Google Scholar 

  38. Kim I-H, Kim J-W, Haufe S, Lee S-W (2015) Detection of braking intention in diverse situations during simulated driving based on EEG feature combination. J Neural Eng 12:016001

    Article  PubMed  Google Scholar 

  39. Kohlmorgen J, Dornhege G, Braun ML, Blankertz B, Müller KR, Curio G, Hagemann K, Bruns A, Schrauf M, Kincses WE (2007) Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR (eds) Toward brain-computer interfacing. MIT Press, Cambridge, pp 409–422

    Google Scholar 

  40. Krepki R, Blankertz B, Curio G, Müller K-R (2007) The Berlin brain-computer interface (BBCI): towards a new communication channel for online control in gaming applications. J Multimed Tools Appl 33:73–90

    Article  Google Scholar 

  41. Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11):2658–2666

    Article  PubMed Central  PubMed  Google Scholar 

  42. Leeb R, Sagha H, Chavarriaga R, Millán JdR (2011) A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng 8(2):025011

    Article  PubMed  Google Scholar 

  43. Leeb R, Gwak K, Kim D-S, Millán JdR (2013) Freeing the visual channel by exploiting vibrotactile BCI feedback. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, Japan

    Google Scholar 

  44. Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Molina A, Al-Khodairy A, Carlson T, Millán JdR (2013) Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 59(2):121–132

    Article  PubMed  Google Scholar 

  45. Leeb R, Tonin L, Carlson T, Millán JdR (2015) Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc IEEE 103:969–982

    Article  Google Scholar 

  46. Lew E, Chavarriaga R, Silvoni S, Millán JdR (2012) Detection of self-paced reaching movement intention from EEG signal. Front Neuroeng 5:13

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lew E, Chavarriaga R, Silvoni S, Millán JdR (2014) Single trial prediction of self-paced reaching directions from EEG signals. Front Neurosci 8:222

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lin C-T, Ko L-W, Sheng T-K (2009) Computational intelligent brain computer interaction and its applications on driving cognition. IEEE Comput Intell Mag 4(4):32–46

    Article  Google Scholar 

  49. Lotte F, Larrue F, Mühl C (2013) Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front Hum Neurosci 7:568

    Article  PubMed Central  PubMed  Google Scholar 

  50. Mak JN, Wolpaw EW (2009) Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng 2:187–199

    Article  PubMed Central  PubMed  Google Scholar 

  51. Marshall D, Coyle D, Wilson S, Callaghan M (2013) Games, gameplay, and BCI: the state of the art. IEEE Trans Comput Intell AI Games 5(2):82–99

    Article  Google Scholar 

  52. Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE (2007) A comprehensive survey of brain interface technology designs. Ann Biomed Eng 35(2):137–169

    Article  CAS  PubMed  Google Scholar 

  53. Millán JdR (2003) Adaptive brain interfaces. Commun ACM 46:74–80

    Article  Google Scholar 

  54. Millán JdR (2004) On the need for on-line learning in brain-computer interfaces. In: Proceedings of international joint conference on neural networks, Budapest

    Book  Google Scholar 

  55. Millán JdR, Franzé M, Mouriño J, Cincotti F, Babiloni F (2002) Relevant EEG features for the classification of spontaneous motor-related tasks. Biol Cybern 86:89–95

    Article  PubMed  Google Scholar 

  56. Millán JdR, Renkens F, Mouriño J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6):1026–1033

    Article  Google Scholar 

  57. Millán JdR, Buttfield A, Vidaurre C, Krauledat M, Schögl A, Shenoy P, Blankertz B, Rao RPN, Cabeza R, Pfurtscheller G, Müller K-R (2007) Adaptation in brain-computer interfaces. In: Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR (eds) Toward brain-computer interfacing. MIT Press, Cambridge, pp 303–325

    Google Scholar 

  58. Millán JdR, Ferrez PW, Galán F, Lew E, Chavarriaga R (2008) Non-invasive brain-machine interaction. Int J Pattern Recognit Artif Intell 22(5):959–972

    Article  Google Scholar 

  59. Millán JdR, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller KR, Mattia D (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161

    PubMed Central  PubMed  Google Scholar 

  60. Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J Cogn Neurosci 9(6):788–798

    Article  CAS  PubMed  Google Scholar 

  61. Müller K-R, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods 167:82–90

    Article  PubMed  Google Scholar 

  62. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174

    Article  PubMed  Google Scholar 

  63. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258

    Article  PubMed  Google Scholar 

  64. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479:228–231

    Article  PubMed Central  PubMed  Google Scholar 

  65. Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM (2014) Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6):1380–1393

    Article  CAS  PubMed  Google Scholar 

  66. Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf E-J, Al-Khodairy A, Murray-Smith R, Millán JdR (2014) Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. J Neural Eng 11(3):036003

    Article  CAS  PubMed  Google Scholar 

  67. Perrin X, Chavarriaga R, Colas F, Siegwart R, Millán JdR (2010) Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot Auton Syst 58(12):1246–1255

    Article  Google Scholar 

  68. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  69. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89:1123–1134

    Article  Google Scholar 

  70. Pfurtscheller G, Allison BZ, Bauernfeind G, Brunner C, Solis Escalante T, Scherer R, Zander TO, Müller-Putz G, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:42

    PubMed Central  Google Scholar 

  71. Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, Muller-Putz GR (2010) Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch”: a feasibility study towards a hybrid BCI. IEEE Trans Neural Syst Rehabil Eng 18:409–414

    Article  PubMed  Google Scholar 

  72. Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N (2013) Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108

    Article  PubMed Central  PubMed  Google Scholar 

  73. Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R (2013) Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 59(2):133–142

    Article  PubMed  Google Scholar 

  74. Saeedi S, Carlson T, Chavarriaga R, Millán JdR (2013) Making the most of context-awareness in brain-computer interfaces. In: Proceedings of IEEE international conference on cybernetics, Lausanne, Switzerland

    Book  Google Scholar 

  75. Sajda P, Pohlmeyer E, Wang J, Parra LC, Christoforou C, Dmochowski J, Hanna B, Bahlmann C, Singh MK, Chang S-F (2010) In a blink of an eye and a switch of a transistor: cortically coupled computer vision. Proc IEEE 98(3):462–478

    Article  Google Scholar 

  76. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111:2138–2144

    Article  CAS  PubMed  Google Scholar 

  77. Scherer R, Müller-Putz GR, Pfurtscheller G (2007) Self-initiation of EEG-based brain-computer communication using the heart rate response. J Neural Eng 4:L23–L29

    Article  CAS  PubMed  Google Scholar 

  78. Schreuder M, Blankertz B, Tangermann M (2010) A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS ONE 5(4):e9813

    Article  PubMed Central  PubMed  Google Scholar 

  79. Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, Piccione F, Birbaumer N (2011) Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 42(4):245–252

    Article  PubMed  Google Scholar 

  80. Tangermann MW, Krauledat M, Grzeska K, Sagebaum M, Vidaurre C, Blankertz B, Müller K-R (2008) Playing pinball with non-invasive BCI. In: Advances in neural information processing systems 21, Vancouver, pp 1641–1648

    Google Scholar 

  81. Tonin L, Leeb R, Tavella M, Perdikis S, Millán JdR (2010) The role of shared-control in BCI-based telepresence. In: Proceedings of 2010 IEEE international conference on systems, man and cybernetics, Istanbul, pp 1462–1466

    Google Scholar 

  82. Tonin L, Leeb R, Millán JdR (2012) Time-dependent approach for single trial classification of covert visuospatial attention. J Neural Eng 9(4):045011

    Article  CAS  PubMed  Google Scholar 

  83. Tonin L, Leeb R, Sobolewski A, Millán JdR (2013) An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation. J Neural Eng 10(5):056007

    Article  CAS  PubMed  Google Scholar 

  84. Vanhooydonck D, Demeester E, Nuttin M, Van Brussel H (2003) Shared control for intelligent wheelchairs: an implicit estimation of the user intention. In: Proceedings of 1st international workshop advances in service robot, Bardolino, pp 176–182

    Google Scholar 

  85. Vidaurre C, Kawanabe M, von Bünau P, Blankertz B, Müller K-R (2011) Toward unsupervised adaptation of LDA for brain-computer interfaces. IEEE Trans Biomed Eng 58(3):587–597

    Article  CAS  PubMed  Google Scholar 

  86. Vidaurre C, Sannelli C, Müller K-R, Blankertz B (2011) Co-adaptive calibration to improve bci efficiency. J Neural Eng 8:025009

    Article  PubMed  Google Scholar 

  87. Wolpaw J, Winter-Wolpaw E (2012) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford/New York

    Book  Google Scholar 

  88. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  89. Yin E, Zhou A, Jiang J, Chen F, Liu Y, Hu D (2013) A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. J Neural Eng 10:026012

    Article  PubMed  Google Scholar 

  90. Zhang H, Chavarriaga R, Gheorghe LA, Millán JdR (2013) Inferring driver’s turning direction through detection of error related brain activity. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, vol 2013, pp 2196–2199

    Google Scholar 

  91. Zhang H, Chavarriaga R, Millán JdR (2014) Towards implementation of motor imagery using brain connectivity features. In: Proceedings of 6th international brain-computer interface conference, Graz, Austria

    Google Scholar 

  92. Zickler C, Di Donna V, Kaiser V, Al-Khodairy A, Kleih S, Kuebler A, Malavasi M, Mattia D, Mongardi S, Neuper C, Rohm M, Rupp R (2009) Brain computer interaction applications for people with disabilities: defining user needs and user requirements. In: Proceedings of AAATE, Florence, p 5

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of text from their prior publications [27, 34, 37, 45, 66] in Sect. 6.3.

This work was supported by the European ICT programme projects TOBI: Tools for Brain-Computer Interaction (FP7-224631) and Opportunity: Activity and Context Recognition with Opportunistic Sensor Configuration (ICT-225938), the Swiss National Science Foundation NCCR Robotics, Nissan Motor Co. Ltd., the Hasler Foundation, and the dissemination by the European ICT coordination and support action BNCI Horizon 2020 (FP7-ICT-609593). The writing up of this work was also supported by the Swiss canton of Valais-Wallis and by the City of Sion. This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José d. R. Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leeb, R., Chavarriaga, R., Perdikis, S., Iturrate, I., Millán, J.d.R. (2015). Moving Brain-Controlled Devices Outside the Lab: Principles and Applications. In: Lee, SW., Bülthoff, H., Müller, KR. (eds) Recent Progress in Brain and Cognitive Engineering. Trends in Augmentation of Human Performance, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7239-6_6

Download citation

Publish with us

Policies and ethics