Skip to main content

Screening of Zeolitic Imidazolate Frameworks for Preconcentration of Hazardous Chemicals

  • Conference paper
Nanotechnology to Aid Chemical and Biological Defense

Abstract

Zeolitic Imidazolate Frameworks (ZIFs) are porous materials which are known for their exceptional chemical/thermal stability and mostly hydrophobic character. These properties make them promising materials for use in the capture and/or detection of hazardous chemicals under humid environments. Henry’s coefficient can be used in order to assess the affinity between a molecule and an adsorbent material. In this study, we used molecular simulations to find a suitable ZIF structure by a quick and easy screening method. For this screening method, the Henry’s coefficients of one explosive (nitromethane), six toxic chemicals (hydrogen disulfide, sulfur dioxide, nitrogen dioxide, carbon monoxide, ethylene oxide, benzene), and three warfare agents (sarin, sulfur mustard, phosgene oxime) in pre-selected ZIFs according to their pore aperture size were computed. In addition, average loading values for the hazardous molecules under five different relative humidity conditions were obtained with GCMC simulations in ZIFs which gave the two highest Henry’s coefficients with respect to the Henry coefficient of water. ZIF-1 and ZIF-68 were found to be the most promising materials for the majority of the hazardous chemicals considered in this study, with several orders of magnitude predicted preconcentration gains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greathouse JA et al (2010) Computational screening of metal-organic frameworks for large-molecule chemical sensing. Phys Chem Chem Phys 12(39):12621–12629

    Article  Google Scholar 

  2. Sarkisov L (2012) Toward rational design of metal-organic frameworks for sensing applications: efficient calculation of adsorption characteristics in zero loading regime. J Phys Chem C 116(4):3025–3033

    Article  Google Scholar 

  3. Colon YJ, Snurr RQ (2014) High-throughput computational screening of metal-organic frameworks. Chem Soc Rev 43(16):5735–5749

    Article  Google Scholar 

  4. Deria P et al (2014) Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem Soc Rev 43(16):5896–5912

    Article  Google Scholar 

  5. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244:444–456

    Article  Google Scholar 

  6. Chung YG et al (2014) Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 2:766–774

    Article  Google Scholar 

  7. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B Struct Sci 58:380–388

    Article  Google Scholar 

  8. Banerjee R et al (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  Google Scholar 

  9. Park KS et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103(27):10186–10191

    Article  Google Scholar 

  10. DeCoste JB, Peterson GW (2014) Metal-organic frameworks for air purification of toxic chemicals. Chem Rev 114(11):5695–5727

    Article  Google Scholar 

  11. Phan A et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  Google Scholar 

  12. Barea E, Montoro C, Navarro JAR (2014) Toxic gas removal – metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43(16):5419–5430

    Article  Google Scholar 

  13. Song XD et al (2014) Investigation of SO2 gas adsorption in metal-organic frameworks by molecular simulation. Inorg Chem Commun 46:277–281

    Article  Google Scholar 

  14. http://www.epa.gov/oppt/aegl/pubs/define.htm

  15. Bourasseau E et al (2008) Thermodynamic behavior of the CO2 + NO2/N2O4 mixture: a Monte Carlo simulation study. J Phys Chem B 112(49):15783–15792

    Article  Google Scholar 

  16. Dauberosguthorpe P et al (1988) Structure and energetics of ligand-binding to proteins – Escherichia-coli dihydrofolate reductase trimethoprim, a drug-receptor system. Proteins Struct Funct Genet 4(1):31–47

    Article  Google Scholar 

  17. Ketko MH, Kamath G, Potoff JJ (2011) Development of an optimized intermolecular potential for sulfur dioxide. J Phys Chem B 115(17):4949–4954

    Article  Google Scholar 

  18. Ketko MH et al (2008) Development of the TraPPE-UA force field for ethylene oxide. Fluid Phase Equilib 274(1–2):44–49

    Article  Google Scholar 

  19. Kristof T, Liszi J (1997) Effective intermolecular potential for fluid hydrogen sulfide. J Phys Chem B 101(28):5480–5483

    Article  Google Scholar 

  20. Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102(14):2569–2577

    Article  Google Scholar 

  21. Martin-Calvo A, Lahoz-Martin FD, Calero S (2012) Understanding carbon monoxide capture using metal organic frameworks. J Phys Chem C 116(11):6655–6663

    Article  Google Scholar 

  22. Rai N, Siepmann JI (2007) Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. J Phys Chem B 111(36):10790–10799

    Article  Google Scholar 

  23. Sokkalingam N et al (2009) Extension of the transferable potentials for phase equilibria force field to dimethylmethyl phosphonate, sarin, and soman. J Phys Chem B 113(30):10292–10297

    Article  Google Scholar 

  24. Zhang L, Siepmann JI (2010) Development of the trappe force field for ammonia. Collect Czechoslov Chem Commun 75(5):577–591

    Article  Google Scholar 

  25. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112(20):8910–8922

    Article  Google Scholar 

  26. Rappe AK et al (1992) Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  Google Scholar 

  27. Ding LF, Yazaydin AO (2013) The effect of SO2 on CO2 capture in zeolitic imidazolate frameworks. Phys Chem Chem Phys 15(28):11856–11861

    Article  Google Scholar 

  28. Liu B, Smit B (2010) Molecular simulation studies of separation of CO2/N-2, CO2/CH4, and CH4/N-2 by ZIFs. J Phys Chem C 114(18):8515–8522

    Article  Google Scholar 

  29. Wilmer CE, Kim KC, Snurr RQ (2012) An extended charge equilibration method. J Phys Chem Lett 3(17):2506–2511

    Article  Google Scholar 

  30. Vlugt TJH et al (2008) Computing the heat of adsorption using molecular simulations: the effect of strong Coulombic interactions. J Chem Theory Comput 4(7):1107–1118

    Article  Google Scholar 

  31. Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2008) RASPA. Northwestern University, Evanston

    Google Scholar 

  32. Ding LF, Yazaydin AO (2012) How well do metal-organic frameworks tolerate flue gas impurities? J Phys Chem C 116(43):22987–22991

    Article  Google Scholar 

Download references

Acknowledgments

Inanc has been supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) under the Program No. 2219 (International Post-doctoral Research Fellowship Programme) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Yazaydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Inanc, I., Yazaydin, O. (2015). Screening of Zeolitic Imidazolate Frameworks for Preconcentration of Hazardous Chemicals. In: Camesano, T. (eds) Nanotechnology to Aid Chemical and Biological Defense. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7218-1_12

Download citation

Publish with us

Policies and ethics