Skip to main content

Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints

  • Chapter
The Nitrogen Cycle at Regional to Global Scales

Abstract

The feasibility of using nitrogen and oxygen isotope ratios of nitrate (NO 3 ) for elucidating sources and transformations of riverine nitrate was evaluated in a comparative study of 16 watersheds in the northeastern U.S.A. Stream water was sampled repeatedly at the outlets of the watersheds between January and December 1999 for determining concentrations, δ 15N values, and δ 180 values of riverine nitrate.

In conjunction with information about land use and nitrogen fluxes, δ 15Nnitrate and δ 18Onitrate values provided mainly information about sources of riverine nitrate. In predominantly forested watersheds, riverine nitrate had mean concentrations of less than 0.4 mg NO 3 -N L−1,δ 15Nnitrate values of less than +5‰, and δ 18Onitrate values between +12 and +19‰. This indicates that riverine nitrate was almost exclusively derived from soil nitrification processes with potentially minor nitrate contributions from atmospheric deposition in some catchments. In watersheds with significant agricultural and urban land use, concentrations of riverine nitrate were as high as 2.6 mg NO 3 -N L−1 with δ 15Nnitrate values between +5 and +8‰ and δ 18Onitrate values generally below +15‰. Correlations between nitrate concentrations,δ 15Onitrate values, and N fluxes suggest that nitrate in waste water constituted a major, and nitrate in manure a minor additional source of riverine nitrate. Atmospheric nitrate deposition or nitrate-containing fertilizers were not a significant source of riverine nitrate in watersheds with significant agricultural and urban land use. Although complementary studies indicate that in-stream denitrification was significant in all rivers, the isotopic composition of riverine nitrate sampled at the outlet of the 16 watersheds did not provide evidence for denitrification in the form of elevated δ 15Nnitrate and δ 18Onitrate values. Relatively low isotopic enrichment factors for nitrogen and oxygen during in-stream denitrification and continuous admixture of nitrate from the above-described sources are thought to be responsible for this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amberger A and Schmidt HL (1987) Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim. Cosmochim. Acta. 51: 2699–2705

    Article  CAS  Google Scholar 

  • Aravena R, Evans ML and Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31: 180–186

    Article  CAS  Google Scholar 

  • Aravena R and Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36: 975–982

    Article  CAS  Google Scholar 

  • Blackmer AM and Bremner JM (1977) Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biol. Biochem. 9: 73–77

    CAS  Google Scholar 

  • Böttcher J, Strebel O, Voerkelius S and Schmidt H-L (1990) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 114: 413–424

    Article  Google Scholar 

  • Boyer EW, Goodale CL, Jaworski NA and Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biochemistry 57/58: 137–169

    Google Scholar 

  • Bräuer K and Strauch G (2000) An alternative procedure for the 180 measurement of nitrate oxygen. Chem. Geol. 168: 283–290

    Article  Google Scholar 

  • Cey EE, Rudolph DL, Aravena R and Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contaminant Hydrol. 37: 45–67

    Article  CAS  Google Scholar 

  • Chang CCY, Langston J, Riggs M, Campbell DH, Silva SR and Kendall C (1999) A method for nitrate collection for 1 15 N and 1180 analysis from waters with low nitrate concentrations. Can. J. Fish. Aquat. Sci. 56: 1856–1864

    Article  CAS  Google Scholar 

  • Cooper AB (1990) Nitrate depletion in the riparian zone and stream channel of a small headwater catchment. Hydrobiologia 202: 13–26

    CAS  Google Scholar 

  • Duff JH and Triska ET (1990) Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can. J. Fish. Aquat. Sci. 47: 1140–1147

    Article  CAS  Google Scholar 

  • Durka W, Schulze E-D, Gebauer G and Voerkelius S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from I5N and 180 measurements. Nature 372: 765–767

    Article  CAS  Google Scholar 

  • Epstein S and Mayeda T (1953) Variation of 0–18 content of waters from natural sources. Geochim. Cosmochim. Acta. 4: 213–224

    Article  CAS  Google Scholar 

  • Farrell RE, Sandercock Pi, Pennock DJ and Van Kessel C (1996) Landscape-scale variations in leached nitrate: relationship to denitrification and natural nitrogen-15 abundance. Soil Sci. Soc. Am. J. 60: 1410–1415

    Article  CAS  Google Scholar 

  • Fogg GE, Rolston DE, Decker DL, Louie DT and Grismer ME (1998) Spatial variation innitrogen isotope values beneath nitrate contamination sources. Ground Water 36: 418–426

    Article  CAS  Google Scholar 

  • Fustec E, Mariotti A, Grillo X and Sajus J (1991) Nitrate removal by denitrification in alluvial ground water: role of a former channel. J. Hydro]. 123: 337–354

    Article  CAS  Google Scholar 

  • Goolsby DA (2000) Mississippi basin nitrogen flux believed to cause gulf hypoxia. EOS 81: 321–327

    Article  Google Scholar 

  • Gormly JR and Spalding RF (1979) Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water 17: 291–301

    Article  CAS  Google Scholar 

  • Harrington RR, Kennedy BP, Chamberlain CP, Blum JD and Folt CL (1998) 15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo solar). Chem. Geol. 147: 281–294

    Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 5: 87–102

    Article  Google Scholar 

  • Hedin LO, Armesto JJ and Johnson AH (1995) Patterns of nutrient loss from unpolluted, old- growth temperate forests: evaluation of biogeochemical theory. Ecology 76: 493–509

    Article  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J. Environ. Qual. 25: 743–755

    Article  CAS  Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P and Zhao-Liang (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochem. 35: 75–139

    CAS  Google Scholar 

  • Hübner H (1986) Isotope effects of nitrogen in the soil and biosphere. In: Fritz P and Fontes JC (Eds) Handbook of Environmental Isotope Geochemistry: The Terrestrial Environment (pp 361–425 ). Elsevier, Amsterdam

    Google Scholar 

  • Jaworski NA and Hetling LJ (1996) Water quality trends of Mid-Atlantic and northeast watersheds over the past 100 years. Presented at Watershed’s 96, Baltimore, MD

    Google Scholar 

  • Kellman L and Hillaire-Marcel C (1998) Nitrate cycling in streams: using natural abundances of NO-3 to measure in-situ denitrification. Biogeochemistry 43: 273–292

    Article  CAS  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C and McDonnell JJ (Eds) Isotope Tracers in Catchment Hydrology (pp 521–576 ). Elsevier, Amsterdam

    Google Scholar 

  • Kinzing AP and Socolow RH (1994) Human impacts on the nitrogen cycle. Physics Today (November 1994 ): 24–31

    Article  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol. Rev. 46: 43–70

    PubMed  CAS  Google Scholar 

  • Knowles R and Blackburn TH (1993) Nitrogen Isotope Techniques. Academic Press, San Diego, 311 pp

    Google Scholar 

  • Kreider CW (1979) Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. J. Hydrol. 42: 147–170

    Article  Google Scholar 

  • Kreisler CW and Browning LA (1983) Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: natural sources versus human pollution. J. Hydrol 61: 285–301

    Article  Google Scholar 

  • Kreisler CW and Jones DC (1975) Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Ground Water 13: 53–61

    Article  Google Scholar 

  • Letolle R (1980) Nitrogen-15 in the natural environment. In: Fritz P and Fontes JC (Eds) Handbook of Environmental Isotope Geochemistry: The Terrestrial Environment (pp 407–433 ). Elsevier, Amsterdam

    Google Scholar 

  • Lowrance R, Vellidis G and Hubbard RK (1995) Denitrification in a restored riparian forest wetland. J. Environ. Qual. 24: 808–815

    Article  CAS  Google Scholar 

  • Macko SA and Ostrom NE (1994) Pollution studies using stable isotopes. In: Lajtha K and Michener RH (Eds) Stable Isotopes in Ecology and Environmental Science (pp 45–62 ). Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A and Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62: 413–430

    Article  CAS  Google Scholar 

  • Mariotti A, Germon JC and Leclerc A (1982) Nitrogen isotope fractionation associated with the NO2 N2O step of denitrification in soils. Can. J. Soil Sci. 62: 227–241

    Article  CAS  Google Scholar 

  • Mariotti A, Landreau A and Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in ground water: application to the chalk aquifer in northern France. Geochim. Cosmochim. Acta. 52: 1869–1878

    Google Scholar 

  • Mayer B, Bollwerk SM, Mansfeldt T, Hütter B and Veizer J (2001) The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta. 65: 2743–2756

    Article  CAS  Google Scholar 

  • McClelland JW and Valiela I (1998) Linking nitrogen in estuarine producers to land derived sources. Limnol. Oceanogr. 43: 577–585

    Article  CAS  Google Scholar 

  • McClelland JW, Valiela I and Michener RH (1997) Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 42: 930–937

    Article  CAS  Google Scholar 

  • Mengis M, Schiff SL, Harris M, English MC, Aravena R, Elgood RJ and MacLean A (1999) Multiple geochemical and isotopic approaches for assessing ground water NO3— elimination in a riparian zone. Ground Water 37: 448–457

    Article  CAS  Google Scholar 

  • Nadelhoffer KJ and Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K and Michener RM (Eds) Stable Isotopes in Ecology and Environmental Science (pp 22–44 ). Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Ostrom NE, Knoke KE, Hedin LO, Robertson GP and Smucker AJM (1998) Temporal trends in nitrogen isotope values of nitrate leaching from an agricultural soil. Chem. Geol. 146: 219–227

    Google Scholar 

  • Paces T (1982) Natural and anthropogenic fluxes of major elements from Central Europe. Ambio. 11: 206–208

    Google Scholar 

  • Revesz K, Böhlke JK and Yoshinari T (1997) Determination of 8 18 O and 6 15 N in nitrate. Anal. Chem. 69: 4375–4380

    Article  PubMed  CAS  Google Scholar 

  • Richards RP and Holloway J (1987) Monte carlo studies of sampling strategies for estimating tributary loads. Water Resources Research 23: 1939–1948

    Article  CAS  Google Scholar 

  • Sebilo M, Billen G, Grably M and Mariotti A (in review) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry, forthcoming

    Google Scholar 

  • Seitzinger PS, Styles RV, Boyer E, Alexander RB, Billen G, Howarth RW, Mayer B and Van Breemen N (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry 57/58: 199–237

    Google Scholar 

  • Silva SR, Kendall C, Wilkinson DH, Ziegler AC, Chang CCY and Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J. Hydrol. 228: 22–36

    Article  CAS  Google Scholar 

  • Sollins P and McCorison FM (1981) Nitrogen and carbon solution chemistry of an old growth coniferous forest watershed before and after cutting. Water Resources Research 17: 1409–1418

    Article  CAS  Google Scholar 

  • Stottlemyer R and Troendle CA (1992) Nutrient concentration patterns in streams draining alpine and subalpine catchments, Fraser Experimental Forest, Colorado. J. Hydrol. 140: 179–208

    Article  CAS  Google Scholar 

  • Turner RE and Rabalais NN (1991) Changes in Mississippi River water quality this century. BioSci. 41: 140–147

    Article  Google Scholar 

  • USGS (2000) National water information system data retrieval. http://waterdata.usgs.gov/ nwis-w/US/. USGS

    Google Scholar 

  • Van Breemen N, Boyer EW, Goodale CL, Jaworski NA, Seitzinger S, Paustian K, Hetling L, Lajtha K, Eve M, Mayer B, Van Dam D, Howarth RW, Nadelhoffer KJ and Billen G (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57/58: 267–293

    Google Scholar 

  • Vanderbilt KL and Lajtha K (2002) Annual and seasonal patterns of nitrogen dynamics at the H. J. Andrews Experimental Forest, Oregon. Biogeochemistry, in review

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH and Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7: 737–750

    Google Scholar 

  • Voerkelius S (1990) Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation: Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. PhD thesis TU Munich, Munich, 119 pp

    Google Scholar 

  • Warwick J and Hill AR (1988) Nitrate depletion in the riparian zone of a small woodland stream. Hydrobiologia 157: 231–240

    Article  CAS  Google Scholar 

  • Wassenaar L I (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 180 in NO3. Appl. Geochem. 10: 391–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mayer, B. et al. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. In: Boyer, E.W., Howarth, R.W. (eds) The Nitrogen Cycle at Regional to Global Scales. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3405-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3405-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6086-0

  • Online ISBN: 978-94-017-3405-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics