Skip to main content

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 20))

Synopsis

The organization of the vertebrate cerebellum has been thoroughly studied over the past century, but the function of this structure remains poorly understood. In elasmobranch fishes, the cerebellum displays tremendous variation in size and development although the basic and conservative nature of cerebellar circuitry as seen in other vertebrate taxa is largely retained. Large and morphologically complex cerebelli have evolved independently in both sharks and batoids, and the relative development of this structure in both taxa parallels those of birds and mammals. There are relatively few studies of the physiological role of the cerebellum in generating or shaping behaviors, however, and a convincing explanation of cerebellar hypertrophy in elasmobranchs is lacking. The purpose of this article is to review the current understanding of the structure of the cerebellum in elasmobranch fishes, the physiological responses of cerebellar neurons and the possible role of the cerebellum in behavior. I will also provide a number of hypotheses for future research directions, based upon models that have been suggested by different investigators. These hypotheses include models of cerebellar function as a sensory coincidence detector, a dynamic state estimator and/or a direct modulator of motor programs. Hypotheses concerning the possible organization of cerebellar microcomplexes, the evolution of afferent and efferent cerebellar connections paralleling those observed in mammals and the role of the cerebellum in learning are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Alvarez, R. and R. Anadon. 1987. The cerebellum of the dogfish, Scyliorhinus canicula: a quantitative study. J. Hirnforsch. 28: 133–137.

    Google Scholar 

  • Alvarez-Otero, R. and R. Anadon. 1992. Golgi cells of the cerebellum of the dogfish, Scyliorhinus canicula (elasmobranchs): a Golgi and ultrastructural study. J. Himforsch. 33: 321–327.

    CAS  Google Scholar 

  • Alvarez-Otero, R., S.D. Regueira and R. Anadon. 1993. New structural aspects of the synaptic contacts on Purkinje cells in an elasmobranch cerebellum. J. Anat. ( Lond. ) 182: 13–21.

    Google Scholar 

  • Alvarez-Otero, R., S.E. Perez, M.A. Rodriguez, F. Adrio and R. Anadon. 1995. GABAergic neuronal circuits in the cerebellum of the dogfish Scyliorhinus canicula (elasmobranchs): an immunocytochemical study. Neurosci. Lett. 187: 87–90.

    Google Scholar 

  • Alvarez-Otero, R., S.E. Perez, M.A. Rodriguez and R. Anadon. 1996. Organization of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: a light microscopic, immunocytochemical, and ultrastructural study. J. Comp. Neurol. 368: 487–502.

    Google Scholar 

  • Barry, M.A. 1987. Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J. Comp. Neurol. 266: 457–477.

    Google Scholar 

  • Brogden, W.J. and W.H. Gantt. 1937. Cerebellar coniditioned reflexes. Amer. J. Physiol. 119: 277–278.

    Google Scholar 

  • Brogden, W.J. and W.H. Gantt. 1942. Intraneural conditioning: cerebellar conditioned reflexes. Archiv. Neurol. Psychiatry 48: 437–455.

    Google Scholar 

  • Boord, R.L. and R.G. Northcutt. 1982. Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J. Comp. Neurol. 207: 274–282.

    Google Scholar 

  • Bucy, R.S. and P.D. Joseph. 1968. Filtering for stochastic processes with applications to guidance. Wiley, New York. 195 pp.

    Google Scholar 

  • Catois, E.M. 1901. Recherches sur l’histologie et l’anatomie microscopique de l’encephale chez les poissons. Bull. Scient. France Belgique 36: 1.

    Google Scholar 

  • Fiebig, E. 1988. Connections of the corpus cerebelli in the thorn-back guitarfish, Platyrhinoidis triseriata (elasmobranchii): a study with WGA-HRP and extracellular granule cell recording. J. Comp. Neurol. 286: 567–583.

    Google Scholar 

  • Hawkes, R., S. Blyth, V. Chockkan, D. Tano, Z. Ji and C. Mascher. 1993. Structural and molecular compartmentation in the cerebellum. Can. J. Neurol. Sci. 20, Suppl. 3: S29–35.

    Google Scholar 

  • Hawkes, R., G. Brochu, L. Dore, C. Gravel and N. Leclerc. 1992. Zebrins: molecular markers of compartmentation in the cerebellum. pp. 22–55. In: R. Llinas and C. Sotelo (ed.) The Cerebellum Revisited, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Hoggatt, A.M. and M.J. Lannoo. 1994. Monoclonal antibody anti-type I and anti-zebrin II labelling in siluriform fishes: the role of shared lineage versus shared function in polypeptide co-distributions. Brain Res. 665: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Houser, G.L. 1901. The neurons and supporting elements of the brain of a selachian. J. Comp. Neurol. 11: 65–175.

    Google Scholar 

  • Ito, M. 1993. Movement and thought: identical control mecha- nisms by the cerebellum. Trends Neurosci. 16: 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M. 1997. Cerebellar microcomplexes. pp. 475–489. In: J.D. Schmahmann (ed.) International Review of Neurobiology, Academic Press, San Diego.

    Google Scholar 

  • Kalman, R.E. 1960. A new approach to linear prediction and filtering problems. J. Basic Eng. A.S.M.E. 82: 35–45.

    Google Scholar 

  • Kappers, C.U.A., G.C. Huber and E. Crosby. 1936. The comparative anatomy of the nervous system of vertebrates, including man. Macmillan, New York. 1845 pp.

    Google Scholar 

  • Karamyan, A.I. 1962. Evolution of the function of the cerebellum and cerebral hemispheres. Published for the National Science Foundation by the Israel Program for Scientific Translations, Jerusalem. 109 pp.

    Google Scholar 

  • Koester, D.M. 1983. Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria. J. Comp. Neurol. 221: 199–215.

    Google Scholar 

  • Konnerth, A., A.L. Obaid and B.M. Salzberg. 1987. Optical recording of electrical activity from parallel fibers and other cell types in skate cerebellar slices in vitro. J. Physiol. 393: 681–702.

    PubMed  CAS  Google Scholar 

  • Lannoo, M.J. and R. Hawkes. 1997. A search for primitive Purkinje cells: zebrin II expression in sea lampreys (Petromyzon marinus). Neurosci. Lett. 237: 53–55.

    Google Scholar 

  • Lannoo, M.J., L. Ross, L. Maler and R. Hawkes. 1991. Development of the cerebellum and its extracerebellar Purkinje cell projection in teleost fishes as determined by zebrin II immunohistochemistry. Prog. Neurobio. 37: 329–363.

    Google Scholar 

  • Larsell, O. 1967. The comparative anatomy and histology of the cerebellum from myxinoids through birds. The University of Minnesota Press, Minneapolis. 291 pp.

    Google Scholar 

  • Lee, L.T. and T.H. Bullock. 1990a. Cerebellar units show several types of early responses to telencephalic stimulation in catfish. Brain Behay. Evol. 35: 278–290.

    Google Scholar 

  • Lee, L.T. and T.H. Bullock. 1990b. Cerebellar units show several types of long-lasting posttetanic responses to telencephalic stimulation in catfish. Brain Behay. Evol. 35: 291–301.

    Google Scholar 

  • Meek, J. 1992. Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neurosci. 48: 249–283.

    Article  CAS  Google Scholar 

  • Meek, J., T.G. Hafmans, L. Maler and R. Hawkes. 1992. Distribution of zebrin II in the gigantocerebellum of the mormyrid fish, Gnathonemus petersii, compared with other teleosts. J. Comp. Neurol. 316: 17–31.

    Google Scholar 

  • Myagkov, N.A. 1990. The brain sizes of living Elasmobranchii as their organization level indicator. I. General analysis. J. Hirnforsch. 32: 553–561.

    Google Scholar 

  • New, J.G. and T.H. Bullock. 1989. Electrosensory responses in the granule cell layer of the cerebellum of an elasmobranch. Soc. Neurosci. Abstr. 15: 1138.

    Google Scholar 

  • Nicholson, C., R Llinas and W. Precht. 1969. Neural elements of the cerebellum in elasmobranch fishes: structural and functional characteristics. pp. 215–244 In. R Llinas and R.F. Mathewson (ed.) Neurobiology of Cerebellar Evolution and Development, Institute for Biomedical Research, American Medical Association, Chicago.

    Google Scholar 

  • Nicholson, L.F.B., J.C. Montgomery and R.L.M. Faull. 1994. GABA, muscarinic cholinergic, excitatory amino acid, neurotensin and opiate binding sites in the octavolateralis column and cerebellum of the skate Raja nasuta ( Pisces: Rajidae). Brain Res. 652: 40–48.

    Google Scholar 

  • Nieuwenhuys, R. 1967. Comparative anatomy of the cerebellum. pp. 1–93. In: C.A. Fox and R.S. Snider (ed.) Progress in Brain Research, Vol. 25, Elsevier, Amsterdam.

    Google Scholar 

  • Northcutt, R.G. 1977. Elasmobranch central nervous system organization and its possible evolutionary significance. Amer. Zool. 17: 411–429.

    Google Scholar 

  • Northcutt, R.G. 1978. Brain organization in the cartilaginous fishes. pp. 117–194. In: E.S. Hodgson and R.F. Mathewson (ed.) Sensory Biology of Sharks, Skates and Rays, Office of Naval Research, Arlington.

    Google Scholar 

  • Northcutt, R.G. 1989. Brain variation and phylogenetic trends in elasmobranch fishes. J. Exp. Zool. 2: 83–100.

    Google Scholar 

  • Northcutt, R.G. and W.J. Brunken. 1984. Cerebellar afferents in the little skate (Batoidea). Soc. Neurosci. Abstr. 10: 853.

    Google Scholar 

  • Paul, D.H. 1969. Electrophysiological studies on parallel fibers of the corpus cerebelli of the dogfish Scyliorhinus canicula. pp. 245–250. In: R. Llinas and C. Sotelo (ed.) Neurobiology of Cerebellar Evolution and Development, Institute for Biomedical Research/American Medical Association, Chicago.

    Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1975. Connections between the cerebellum and the reticular formation in the dogfish Scyliorhinus canicula. J. Physiol. 249: 62–63.

    Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1979. The significance of cerebellar function for a reflex movement of the dogfish. J. Comp. Physiol. 134: 69–74.

    Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1981. The activity of cerebellar neurones of an elasmobranch fish (Scyliorhinus canicula) during a reflex movement of a fin. J. Physiol. 321: 369–383.

    PubMed  CAS  Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1983. The activity of cerebellar nuclear neurones in relation to stimuli which evoke a pectoral fin reflex in dogfish. J. Physiol. 342: 465–481.

    PubMed  CAS  Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1984a. Projections of cerebellar Purkinje cells in the dogfish, Scyliorhinus. Neurosci. Lett. 44: 43–46.

    Google Scholar 

  • Paul, D.H. and B.L. Roberts. 1984b. The activity of cerebellar neurones of the decerebrate dogfish Scyliorhinus during spontaneous swimming movements. J. Physiol. 352: 1–16.

    PubMed  CAS  Google Scholar 

  • Paulin, M.G. 1993. The role of the cerebellum in motor control and perception. Brain Behay. Evol. 41: 39–50.

    Google Scholar 

  • Paulin, M.G. 1997. Neural representations of moving systems. pp. 516–535. In: J.D. Schmahmann (ed.) International Review of Neurobiology, Academic Press, San Diego.

    Google Scholar 

  • Puzdrowski, R.L. 1997. Anti-zebrin II immunopositivity in the cerebellum and octavolateral nuclei in two species of stingrays. Brain Behay. Evol. 50: 358–368.

    Google Scholar 

  • Rudeberg, S.-I. 1961. Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Ph.D. Dissertation, University of Lund, Lund. 148 pp.

    Google Scholar 

  • Sauerbeck, E. 1896. Beitrage zur Kenntis vom feineren Bau des Selachierhirns. Anat. Anz. B. 12: 41.

    Google Scholar 

  • Schaper, A. 1898. The finer structure of the selachian cerebellum (Mustelis vulgaris) as shown by chrome silver preparations. J. Comp. Neurol. 8: 1–20.

    Google Scholar 

  • Schmidt, A.W. and D. Bodznick. 1987. Afferent and efferent connections of the vestibulolateral cerebellum of the little skate, Raja erinacea. Brain Behay. Evol. 30: 282–302.

    Google Scholar 

  • Smeets, W.J.A.J. 1982. The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J. Comp. Neurol. 205: 139–152.

    Google Scholar 

  • Smeets, W.J.A.J., R. Nieuwenhuys and B.L. Roberts. 1983. The central nervous system of cartilaginous fishes. Springer-Verlag, New York. 266 pp.

    Book  Google Scholar 

  • Sterzi, G. 1905. Sulla regio parietalis dei ciclosotomi, dei selachii e degli olocefali. Anat. Anz. 27: 346–416.

    Google Scholar 

  • Tencate, J. 1930. Contribution a la physiologie comparée du cervelet. III. Le cervelet des plagiostomes. Archiv. need. physiol. de l’homme et des animaux 15: 479–528.

    Google Scholar 

  • Thompson, R.F., J.K. Thompson, J.J. Kim, D.J. Krupa and P.G. Shinkman. 1998. The nature of reinforcement in cerebellar learning. Neurobiol. Learn. Mem. 70: 150–176.

    Google Scholar 

  • Voorhoeve. 1917. Over den Bouw van de kleine hersenen der Plagiostomen (here in English). Inaugural Dissertation, University of Amsterdam, Amsterdam. 88 pp.

    Google Scholar 

  • Wassef, M., P. Angaut, L. Arsenio-Nunes, F. Bourrat and C. Sotelo. 1992. Purkinje cell heterogeneity: its role in organizing the topography of cerebellar cortex connections. pp. 5–21. In: R. Llinas and C. Sotelo (ed.) The Cerebellum Revisited, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Welker, W. 1987. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy. pp. 239–280. In: J.S. King (ed.) New Concepts in Cerebellar Neurobiology, A.R. Liss, New York.

    Google Scholar 

  • Young, W. 1980. Field potential analysis in elasmobranch cerebellum. Brain Res. 199: 101–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Timothy C. Tricas Samuel H. Gruber

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

New, J.G. (2001). Comparative neurobiology of the elasmobranch cerebellum: theme and variations on a sensorimotor interface. In: Tricas, T.C., Gruber, S.H. (eds) The behavior and sensory biology of elasmobranch fishes: an anthology in memory of Donald Richard Nelson. Developments in environmental biology of fishes, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3245-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3245-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5655-9

  • Online ISBN: 978-94-017-3245-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics