Skip to main content

Electronic and Electromagnetic Properties in Nanometer Scales

  • Chapter
Optical and Electronic Process of Nano-Matters

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 8))

Abstract

Recent developments in nano-fabrication techniques based on self-organization and other techniques have put us into the position of being able to start investigations on novel functions in nanometer sized electronic devices. The nanometer region is the stage where both electronic states and electronic transport properties show mesoscopic natures. As the size of device elements becomes closer to the electron de Broglie wavelength, the electronic states and electronic transport properties manifest their quantum natures, so that the electronic behaviors depend strongly on the size and shape of the device element via boundary conditions for electron wave functions. The features of electronic devices are also determined by the character of the electromagnetic field associated with electronic motions, since their function is to control the transport of the electrical signal. In macroscopic conditions, such electromagnetic considerations correspond to of circuit design problems which are usually independent of the microscopic construction of each element. In nanometer scales, however, the construction and function of devices which determine the electronic and electromagnetic properties might be strongly related, so that the size and shape of each device element has a strong and immediate influence on the signal transport according to the electromagnetic response of matter and associated boundary conditions. An extensive study on interactions between electronic systems and electromagnetic fields is indispensable in order to understand the overall functions of devices. Such a study would let us take advantage of the peculiar properties of electronic and electromagnetic phenomena revealed at the nanometer scale for the realization of devices with novel functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton University Press, Princeton (1983).

    Google Scholar 

  2. M. Burne, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, Phys. Rev. Lett., 77 (1996) 4887–4890.

    Article  Google Scholar 

  3. H. Grabert and M. H. Devoret (eds.), Single Charge Tunneling, Plenum, New York (1991).

    Google Scholar 

  4. G. S. Agarwal, Quantum Electrodynamics in the Presence of Dielectrics and Conductors. I. Electromagnetic-Field Response Functions and Blackbody Fluctuations in Finite Geometries, Phys. Rev. A, 11 (1975) 230–242.

    Article  Google Scholar 

  5. G. S. Agarwal, Quantum Electrodynamics in the Presence of Dielectrics and Conductors. II. Theory of Dispersion Forces, Phys. Rev. A, 11 (1975) 243–252.

    Article  Google Scholar 

  6. G. S. Agarwal, Quantum Electrodynamics in the Presence of Dielectrics and Conductors. III. Relations among One-Photon Transition Probabilities in Stationary and Non Stationary Fields, Density of States, the Field-Correlation Functions, and Surface-Dependent Response Functions, Phys. Rev. A, 11 (1975) 253–264.

    Article  Google Scholar 

  7. D. Mechede, W. Jhe, and E. A. Hinds, Radiative Properties of Atoms Near a Conducting Plane: An Old Problem in a New Light, Phys. Rev. A, 41 (1990) 1587–1596.

    Article  Google Scholar 

  8. W. Jhe and J. W. Kim, Atomic Energy-Level Shifts Neara Dielectric Microsphere, Phys. Rev. A, 51 (1995) 1150–1153.

    Article  CAS  Google Scholar 

  9. M. Janowicz and W. Zakowicz, Quantum Radiation of a Harmonic Oscillator Near the Planar Dielectric-Vacuum Interface, Phys. Rev. A, 50 (1994) 4350–4364.

    Article  CAS  Google Scholar 

  10. M. Burne, F. Schmidt-Kaler, A. Maali, E. Hagley, J. Dreyer, J. M. Raimond, and S. Haroche, Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity, Phys. Rev. Lett., 76 (1996) 1800–1803.

    Article  Google Scholar 

  11. C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, Real-Time Cavity QED with Single Atoms, Phys. Rev. Lett., 80 (1998) 4157–4160.

    Article  CAS  Google Scholar 

  12. J. A. Wheeler and R. P. Feynman, Interaction with the Absorber as the Mechanism of Radiation, Rev. Mod. Phys., 17 (1945) 157–181.

    Article  Google Scholar 

  13. R. P. Feynman, Quantum Electrodynamics, Benjamin/Cummings, Reading, Mass. (1961).

    Google Scholar 

  14. E. Yablonovitch and T. J. Gmitter, Photonic Band Structure: The Face-Centered-Cubic case, Phys. Rev. Lett., 63 (1989) 1950–1953.

    Article  CAS  Google Scholar 

  15. K. M. Leung and Y. F. Liu, Full Vector Wave Calculation of Photonic Band Structures in a Face-Centered-Cubic Dielectric Media, Phys. Rev. Lett., 65 (1990) 2646–2649.

    Article  CAS  Google Scholar 

  16. Z. Zhang and S. Satpathy, Electromagnetic Wave Propagation in Periodic Structures: Bloch Wave Solution of Maxwell’s Equations, Phys. Rev. Lett., 65 (1990) 2650–2653.

    Article  CAS  Google Scholar 

  17. S. John and J. Wang, Quantum Electrodynamics Near a Photonic Band Gap: Photon Bound States and Dressed Atoms, Phys. Rev. Lett., 64 (1990) 2418–2421.

    Article  CAS  Google Scholar 

  18. M. Ohtsu and H. Hori, Near-Field Nano-Optics, Kluwer Academic/Plenum Publishing Corp., New York (1999).

    Book  Google Scholar 

  19. K. Cho, Nonlocal Theory of Radiation-Matter Interaction: Boundary-Condition-Less Treatment of Maxwell Equations, Progr. Theor. Phys. Suppl., 106 (1991) 225–233.

    Article  CAS  Google Scholar 

  20. K. Cho, Y. Ohfuti, and K. Arima, Study of Scanning Near-Field Optical Microscopy (SNOM) by Nonlocal Response Theory, Jpn. J. Appl. Phys., 34 (1994) 267–270.

    Google Scholar 

  21. J. J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev., 112 (1958) 1555–1567.

    Article  CAS  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, 6th ed., John Wiley & Sons, New York (1986).

    Google Scholar 

  23. A. D. Boardman (ed.), Electromagnetic Surface Modes, John Wiley & Sons, Chichester (1982).

    Google Scholar 

  24. S. M. Barnett, B. Huttner, and R. Roudon, Spontaneous Emission in Absorbing Dielectric Media, Phys. Rev. Lett., 68 (1992) 3698–3701.

    Article  CAS  Google Scholar 

  25. M. Specht, J. D. Pedaring, W. M. Heckl, and T. W. Hänsch, Scanning Plasmon Near-Field Microscope, Phys. Rev. Lett., 68 (1992) 476–479.

    Article  CAS  Google Scholar 

  26. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Winland, Demonstration of a Fundamental Quantum Logic Gate, Phys. Rev. Lett., 75 (1995) 4714–4717.

    Article  CAS  Google Scholar 

  27. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Winland, Quantum Zeno Effect, Phys. Rev. A, 41 (1990) 2295–2300.

    Google Scholar 

  28. V. B. Braginsky and F. Y. Khalili, Quantum Measurement, Cambridge University Press, Cambridge (1992).

    Book  Google Scholar 

  29. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov-Bohm Effect with Magnetic Field Completely Shielded from Electron Wave, Phys. Rev. Lett., 56 (1986) 792–795.

    Article  Google Scholar 

  30. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, Oxford (1993).

    Google Scholar 

  31. H. J. Güntherodt and R. Wiesendanger (eds.), Scanning Tunneling Microscopy I, 2nd ed., Springer-Verlag, Berlin (1994).

    Google Scholar 

  32. R. Wiesendanger and H. J. Güntherodt (eds.), Scanning Tunneling Microscopy II, 2nd ed., Springer-Verlag, Berlin (1995).

    Google Scholar 

  33. R. Wiesendanger and H. J. Güntherodt (eds.), Scanning Tunneling Microscopy III, 2nd ed., Springer-Verlag, Berlin (1996).

    Google Scholar 

  34. C. J. Chen, Attractive Interatomic Force as a Tunneling Phenomenon, J. Phys.: Condens. Matter, 3 (1991) 1227–1245.

    Article  Google Scholar 

  35. M. Ohtsu (ed.), Near-Field Nano/Atom Optics and Technology, Springer-Verlag, Tokyo (1998).

    Google Scholar 

  36. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, 7 x 7 Reconstruction on Si(11 1) Resolved in Real Space, Phys. Rev. Lett., 50 (1983) 120–123.

    Article  CAS  Google Scholar 

  37. P. K. Tien and J. P. Gordon, Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films, Phys. Rev., 129 (1962) 647–651.

    Article  Google Scholar 

  38. L. P. Kouwenhoven, S. Jauhar, K. McCormic, D. Dixon, P. L. McEuen, Yu. V. Nazarov, N. C. van der Vaart, and C. T. Foxon, Photon-Assisted Tunneling through a Quantum Dot, Phys. Rev. B, 50 (1994) 2019–2022.

    Article  CAS  Google Scholar 

  39. L. P. Kowenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Observation of Photon-Assisted Tunneling through a Quantum Dot, Phys. Rev. Lett., 73 (1994) 3443–3446.

    Article  Google Scholar 

  40. P. Johansson, R. Monreal, and P. Appel, Theory of Light Emission from a Scanning Tunneling Microscope, Phys. Rev. B, 42 (1990) 9210–9213.

    Article  CAS  Google Scholar 

  41. R. Berndt, J. K. Gimzewski, and P. Johansson, Inelastic Tunneling Excitation of Tip-Induced Plasmon Modes on Noble-Metal Surface, Phys. Rev. Lett., 37 (1991) 3796–3799.

    Article  Google Scholar 

  42. R. Berndt and J. K. Gimzewski, Injection Luminescence from CdS(l l 20) Studied with Scanning Tunneling Microscopy, Phys. Rev. B, 45 (1992) 14095–14099.

    Article  CAS  Google Scholar 

  43. D. W. Pohl and D. Courjon (eds.), Near Field Optics, Kluwer Academic Publishers, Dordrecht (1993).

    Google Scholar 

  44. M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instlumrntation, and Applications, John Wiley & Sons, New York (1996).

    Google Scholar 

  45. J. P. Fillard, Near Field Optics and Nanoscopy, World Scientific, Singapore (1996).

    Book  Google Scholar 

  46. M. Born and E. Wolf, Principles of Optics, 3rd ed., Pergamon Press, Oxford (1965).

    Google Scholar 

  47. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, Vol. 1, Chap. 1, p. 71, John Wiley & Sons, New York (1977).

    Google Scholar 

  48. K. Cho (ed.), Excitons, Springer, Berlin (1979).

    Google Scholar 

  49. V. M. Aharanovich and A. A. Maradudin (eds.), Excitons, North-Holland, Amsterdam (1982).

    Google Scholar 

  50. A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York (1949).

    Google Scholar 

  51. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part 1, McGRAW-HILL Book Comp., New York (1953).

    Google Scholar 

  52. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part 2, McGRAW-HILL Book Comp., New York (1953).

    Google Scholar 

  53. E. Wolf and M. Niet-Vesperinas, Analyticity of the Angular Spectrum Amplitude of Scattered Fields and Some of Its Consequence, J. Opt. Soc. Am. A, 2 (1985) 886–890.

    Article  Google Scholar 

  54. T. Inoue and H. Hori, Representations and Transforms of Vector Fields as the Basis of Near-Field Optics, Opt. Rev., 3 (1996) 458–462.

    Article  Google Scholar 

  55. T. Inoue and H. Hori, Theoretical Treatment of Electric and Magnetic Multipole Radiation Near a Planar Dielectric Surface Based on Angular Spectrum Representation of Vector Field, Opt. Rev., 5 (1998) 295–302.

    Article  Google Scholar 

  56. J. D. Jackson, Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York (1975).

    Google Scholar 

  57. H. Schwarz and H. Hora, Moculation of an Electron Wave by a Light Wave, Appl. Phys. Lett., 15 (1969) 349–351.

    Article  CAS  Google Scholar 

  58. H. Hora, Coherence of Matter Waves in the Effect of Electron Waves Modulation by Laser Beams in Solids, Phys. Stat. Sol., 42 (1970) 131–136.

    Article  CAS  Google Scholar 

  59. J. Bae, H. Shirai, T. Nishida, T. Nozokido, K. Furuya, and K. Mizuno, Experiantal Verification of the Theory on the Inverse Smith-Purcell Effect at a Submillileter Wavelength, Appl. Phys. Lett., 61 (1992) 870–872.

    Article  Google Scholar 

  60. J. Bae, S. Okuyama, T. Akizuki, and K. Mizuno, Electron Energy Modulation with Laser Light Using a Small Gap Circuit: A Theoretical Consideration, Nuclear Instruments and Methods in Physics Research, A331 (1993) 509–512.

    Article  Google Scholar 

  61. G. Torardo di Francia, On the Theory of some Cerenkovian Effects, Nuovo Cimment, 16 (1960) 1085–1101.

    Article  Google Scholar 

  62. D. A. Tidman, A Quantum Theory of Radiative Index, Cerenkov Radiation and the Energy Loss of a Fast Charged Particle, Nuclear Phys.,2 (1956/1957) 289–346.

    Google Scholar 

  63. D. F. Nelson, Momentum, Pseudomomentum, and Wave Momentum: Toward Resolving the Minkowski-Abraham Controversy, Phys. Rev. A, 44 (1991) 3985–3996.

    Article  Google Scholar 

  64. R. Peierls, More Surprise in Theoretical Physics, Sec. 2.4–2.6, pp. 30–42, Princeton University Press, Princeton (1991).

    Google Scholar 

  65. J. P. Gordon, Radiation Force and Momenta in Dielectric Media, Phys. Rev. A, 8 (1973) 1421.

    Google Scholar 

  66. T. Matsudo, H. Hori, T. Inoue, H. Iwata, Y. Inoue, and T. Sakurai, Direct Detection of Evanescent Electromagnetic Waves at a Planar Dielectric Surface by Laser Atomic Spectroscopy, Phys. Rev. A, 55, (1997) 2406–2412.

    Article  CAS  Google Scholar 

  67. T. Matsudo, T. Takahara, H. Hori, and T. Sakurai, Pseudomomentum Transfer from Evanescent Waves to Atoms Measured by Saturated Absorption Spectroscopy, Opt. Commun., 145 (1998) 64–68.

    Article  CAS  Google Scholar 

  68. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers, Phys. Rev. Lett., 76 (1996) 4500–4503.

    Article  CAS  Google Scholar 

  69. M. Kristensen and J. P. Woerdman, Is Photon Angular Momentum Conserved in Dielectric Medium?, Phys. Rev. Lett., 72 (1994) 2171–2174.

    Article  CAS  Google Scholar 

  70. L. Mandel, Configuration-Space Photon Number Operators in Quantum Optics, Phys. Rev., 144 (1966) 1071–1077.

    Article  CAS  Google Scholar 

  71. C. K. Carniglia and L. Mandel, Quantization of Evanescent Electromagnetic Waves, Phys. Rev. D,3 (1971) 280–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hori, H. (2001). Electronic and Electromagnetic Properties in Nanometer Scales. In: Ohtsu, M. (eds) Optical and Electronic Process of Nano-Matters. Advances in Optoelectronics (ADOP), vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2482-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2482-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5707-5

  • Online ISBN: 978-94-017-2482-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics