Skip to main content

Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

  • Chapter
Lactic Acid Bacteria: Genetics, Metabolism and Applications

Abstract

Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal sugar metabolism to nutritional end-products other than lactic acid such as L-alanine, several low-calorie sugars and oligosaccharides or to enhancement of sugar metabolism for complete removal of (undesirable) sugars from food materials. Moreover, we will review current metabolic engineering approaches that aim at increasing the flux through complex biosynthetic pathways, leading to the production of the B-vitamins folate and riboflavin. An overview of these metabolic engineering activities can be found on the website of the Nutra Cells 5th Framework EU-project (www.nutracells.com). Finally, the impact of the developments in the area of genomics and corresponding high-throughput technologies on nutraceutical production will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrne S and Molin G (1991) Spontaneous mutations changing the raffinose metabolism of Lactobacillus plantarum. Antonie van Leeuwenhoek 60: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Alm L (1980) Effect of fermentation on B-vitamin content of milk in Sweden. J. Dairy Sci. 65: 353–359.

    Article  Google Scholar 

  • Ames BN (1999) Micronutrient deficiencies cause DNA damage and cancer. Food Sc. Agric. Chem. 1: 1–15.

    CAS  Google Scholar 

  • Bates CT (1987) Human riboflavin requirements and metabolic consequences of deficiency in man and animals. World Rev. Nutr. Diet 50: 215–265.

    CAS  Google Scholar 

  • Becker A, Katzen F, Pühler A and Ielpie L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50: 145–152.

    Google Scholar 

  • Belko AZ, Obarzanek E, Kalkwarf HJ, Rotter MA, Bogusz S, Miller D, Haas JD and Roe DA (1983) Effects of exercise on riboflavin requirements of young women. Am. J. Clin. Nutr. 37: 509–517.

    Google Scholar 

  • Bhandari SD and Gregory JF (1990) Inhibition by selected food components of human and porcine intestinal pteroylpolyglutamate hydrolase activity. Am. J. Clin. Nutr. 51: 87–94.

    PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD and Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Article  PubMed  CAS  Google Scholar 

  • Boushey CJ, Beresford AA, Omenn GS and Moltulsky AG (1996) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. J. Amer. Med. Assoc. 274: 1049–1057.

    Google Scholar 

  • Brattstrom L (1996) Vitamins as homocysteine-lowering agents. J. Nutr. 126 (4 Suppl): 1276S - 1280S.

    PubMed  CAS  Google Scholar 

  • Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E and Palsson BO (2001) Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26: 179–186.

    Google Scholar 

  • Cutler DJ, Zwick ME, Carrasquillo MM, Yohn CT, Tobin KP, Kashuk C, Mathews DJ, Shah NJ, Eichler EE, Warrington JA and Chakravarti A (2001) High-throughput variation detection and genotyping using microarrays. Genome Res 11: 1913–1925

    Google Scholar 

  • Debord B, Lefebvre C, Guyot-Hermann AM, Hubert J, Bouche R and Guyot JC (1987) Study of different forms of mannitol: Comparative behaviour under compression. Drug Develop. Ind. Pharm. 13: 1533–1546.

    Google Scholar 

  • De Graaf AA, Mahle M, Mollney M, Weichen W, Stahmann P and Sahm M (2000) Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy. J. Biotechnol. 77: 25–35.

    Google Scholar 

  • Ruyter PGGA, Kuipers OP and de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662–3667.

    Google Scholar 

  • Vuyst L and Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 21: 153–177.

    Google Scholar 

  • Vos WM (1996). Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 70: 223–242.

    Article  PubMed  Google Scholar 

  • Dwivedi BK (1978) Low Calorie and Special Dietary Foods. CRC Press, Inc, West Palm Beach.

    Google Scholar 

  • Efiuvwevwere BJO, Gorris LG, Smid EJ and Kets EPW (1999) Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl. Microbiol. Biotechnol. 51: 100–104

    Google Scholar 

  • Ferain T, Schanck AN and Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J. Bacteriol. 178: 7311–7315

    Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND and Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed acid fermentation in Lactococcus lactis: predominant role of NADH/NAD+ ratio. J. Bacteriol. 179: 5282–5287.

    PubMed  CAS  Google Scholar 

  • Garro MS, Giori GS, de Valdez GF and Oliver G (1996) Characterization of a-galactosidase from Lactobacillus fermentum. J. Appl. Bacteriol. 75: 485–488.

    Google Scholar 

  • Gibson GR and Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 124: 1401–1412.

    Google Scholar 

  • Gibson GR and Wang X (1994) Bifidogenic properties of different types of fructo-oligosaccharides. Food Microbiol. 11(6): 491498.

    Google Scholar 

  • Griffin WC and Lynch MJ (1972) Polyhydric alcohols. In Furia TE (ed.) CRC Handbook of Food Additives, Vol 1 (2nd edn.), CRC-Press, Cleveland, OH (pp 431–455 ).

    Google Scholar 

  • Grobben GJ, Peters SWPG, Wisselink HW, Weusthuis RA, Hoefnagel MHN, Hugenholtz J and Eggink G (2001) Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl. Environ. Microbiol. 67: 2867–2870.

    Google Scholar 

  • Grossiord B, Vaughan EE, Luesink E and de Vos WM (1998a) Genetics of galactose utilisation via the Leloir pathway in lactic acid bacteria. Lait 78: 77–84.

    Article  CAS  Google Scholar 

  • Hamm-Alvarez S, Sancar A and Rajagopalan KV (1989) Role of enzyme-bound 5,10-methenyltetrahydropteroylpolyglut amate in catalysis by Escherichia coli DNA photolyase. J. Biol. Chem. 264: 9649–9656.

    Google Scholar 

  • Hassan RM and Thumham DJ (1977) Effects of riboflavin deficiency on the metabolism of the red blood cell. Ind. J. Vit. Nutr. Res. 47: 349–355.

    CAS  Google Scholar 

  • Hirasuka Y and Li G (1992) Alcohol and eye diseases: a review of epidemiologic studies. J. Stud. Alcohol 62: 397–402.

    Google Scholar 

  • Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, van Swam II, Bangers R, Westerhoff HV and Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology, 148: 1003–1013.

    PubMed  CAS  Google Scholar 

  • Hols P, Kleerebezem M, Schank AN, Ferain T, Hugenholtz J, Del-cour J and de Vos WM (1999a) Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17: 588–592.

    Google Scholar 

  • Hosono A, Lee J, Ametani A, Natsume M, Hirayama M, Adachi T and Kaminogawa S (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101–4. Biosci. Biotech. Biochem. 61: 312–316.

    Google Scholar 

  • Huber M, Mundlein A, Dornstauder E, Schneeberger C, Tempfer CB, Mueller MW and Schmidt WM (2002) Accessing single nucleotide polymorhisms in genomic DNA by direct multiplex poly-merase chain reaction amplification on nucleotide microarrays. Anal. Biochem. 303: 25–33.

    Google Scholar 

  • Hugenholtz J, Hols P, Starrenburg MJC, de Vos, WM and Kleerebezem M (2000) Metabolic engineering of Lactococcus lactis leading to high diacetyl production. Appl. Environ. Microbiol. 66: 4112–4114.

    Google Scholar 

  • Humbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann H-P, Ritz H, Richter G, Bacher A and van Loon APGM (1999) J. Ind. Microbiol. Biotechnol. 22: 1–7.

    Google Scholar 

  • Kawaguchi M, Fujioka Y, Kishimoto M, Matsuma T and Ichikawa T (1999) Dietary fiber and phophorylated oligosaccharide protect small intestinal mucosa of rat from oxidative damages in vitro. J. Jap. Soc. Food Sci. Technol. 46: 487–490.

    Google Scholar 

  • Khane SK, Jha K, Gandhi AP and Gupta MN (1994) Hydrolysis of flatulence-causing galactooligosaccharides by agarose-entrapped Aspergillus oryzae cells. Food Biochem. 51: 29–31.

    Google Scholar 

  • Kim P, Yoon SH, Roh HJ and Choi JH (2001) High production of D-tagatose, a potential sugar substitute, using immobilized Larabinose isomerase. Biotechnol. Prog. 17: 208–210.

    Google Scholar 

  • Kitazawa H, Toba T, Itoh T, Kumano N, Adachi S and Yamaguchi T (1991) Antitumoral activity of slime-froming, encapsulated Lactococus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, `viili’. Animal Sci. Technol. 62: 277–283.

    Google Scholar 

  • Klapa MI, Park SM, Sinskey AJ and Stephanopoulos G (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: theory. Biotechnol. Bioeng. 62: 375–391.

    Google Scholar 

  • Kleerebezem M, van Kranenburg R, Tuiner R, Boels IC, Zoon P, Looijesteijn E, Hugenholtz J and de Vos WM (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie van Leeuwenhoek 76: 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM and Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin inducible expression cassettes for Lactococcus, Leuconostoc and Lactobacillus spp. Appl. Environ. Microbiol. 63: 4581–4584.

    Google Scholar 

  • Kleerebezem M, Hols P and Hugenholtz P (2000) Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme Microb. Technol. 26: 840–848.

    Google Scholar 

  • Kokoris M, Dix K, Moynahan K, Mathis J, Erwin B, Grass P, Hines B and Duesterhoeft A (2000) High-throughput SNP genotyping with the Masscode system. Mol. Diagn. 5: 329–340.

    Google Scholar 

  • Kuipers OP, de Ruyter PGGA, Kleerebezem M and de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotech. 64: 15–21.

    Article  CAS  Google Scholar 

  • Lakshini AV (1998) Riboflavin metabolism–relevance to human nutrition. Ind. J. Med Res. 108: 182–190.

    Google Scholar 

  • Levander F, Andersson U and Radstrom P (2001) Physiological role of beta-phosphoglucomutase in Lactococus lactis. Appl. Environ. Microbiol. 67: 4556–4553.

    Google Scholar 

  • Levander F and R$dström P (2001) Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose-and lactose-utilizing Streptococcus thermophilus. Appl. Environ. Microbiol. 67: 2734–2738.

    Article  PubMed  CAS  Google Scholar 

  • Looijesteijn PJ, Boels IC, Kleerebezem M and Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003–5008.

    Google Scholar 

  • Lopez de Felipe F, Starrenburg MJC and Hugenholtz J (1997) The role of NADH-oxidation in acetoin and diacetyl production from glucose in Lactococcus lactis. FEMS Microbiol. Lett. 156: 1519.

    Google Scholar 

  • Lopez de Felipe F, Kleerebezem M, de Vos WM and Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled overexpression of NADH oxidase. J. Bacteriol. 180: 3804–3808.

    Google Scholar 

  • Maity TK and Paul SC (1991) Low-oligosaccharide soy milk: application of a-galactosidase for hydrolysing soy-oligosaccharide. Ind. Dairyman 43: 443–448.

    Google Scholar 

  • Manzoni M, Rollin M and Bergomi S (2001) Biotransformations of D-galactitol to tagatose by acetic acid bacteria. Proc. Biochem. 36: 971–977.

    Google Scholar 

  • McBurney MW and Whitmore GF (1974) Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell 2: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima H, Suzuki Y, Kaizu H and Hirota T (1992a) Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 57: 13271329.

    Google Scholar 

  • Nakajima H, Hirota T, Toba T, Itoh T and Adachi S (1992b) Structure of the extracellular polysaccharide from slime-forming Lactococcus lacks subspecies cremoris SBT0495. Carbohydr. Res. 224: 245–253.

    Google Scholar 

  • Neta T, Tabata K and Hirasawa M (2000) Low-cariogenicity of trehalose as a substrate. J. Dent 28: 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman C, Gasson MJ, Almeida JS and Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur. J. Biochem. 267: 3859–3868.

    Google Scholar 

  • Park SM, Klapa MI, Sinskey M and Stephanopoulos G (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: applications. Biotechnol. Bioeng. 62: 392–401.

    Google Scholar 

  • Pavan S, Hols P, Delcour J, Geoffroy MC, Grangette C, Kleerebezem M and Mercenier A (2000) Adaptation of the nisincontrolled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl. Environ. Microbiol. 66: 4427–4432.

    Google Scholar 

  • Pszczola DE (1992) The nutraceutical initiative: a proposal for economic and regulatory reform. Food Biotechnol. 46 (4): 77–79.

    Google Scholar 

  • Ramos A, Boels IC, de Vos WM and Santos H (2001) Relationship between glycolysis and exopolysaccharides biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 67: 33–41.

    Google Scholar 

  • Rollin C, Morgant V, Guyonvarch A and Guerquin-Kern JL (1995) 13C-NMR studies of Cyanobacterium melassecola metabolic pathways. Eur. J. Biochem. 227: 488–493.

    Google Scholar 

  • Rooijen van RJ, van Schalkwijk S and de Vos WM (1991) Molecular cloning, characterization and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176–7181.

    PubMed  Google Scholar 

  • Rosenberg IH and Godwin HA (1971) Inhibition of intestinal gammaglutamyl carboxypeptidase by yeast nucleic acid: an explanation of variability in utilization of dietary polyglutamyl folate. J. Clin. Investig. 50: 78a.

    Google Scholar 

  • Ross NS and Klein MR (1990) Riboflavin deficiency in cultured rat hepatoma cells: a model for studying the hepatic effects of riboflavin deficiency. In Vitro Cell Dev. Biol. 26: 280–287.

    Google Scholar 

  • Schmidt K, Nielsen J and Villadsen J (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71: 175–189.

    Article  PubMed  CAS  Google Scholar 

  • Seyoum E and Selhub J (1998) Properties of food folates determined by stability and susceptibility to intestinal pteroylpolyglutamate hydrolase action. J. Nutr. 128: 1956–1960.

    PubMed  CAS  Google Scholar 

  • Shen B, Jensen RG and Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Phys. 115: 527–532. Silvestroni A, Sesma F, Savoy G, Connes C and Piard J-C (2002)

    Google Scholar 

  • Structure, organization, and expression of the melA struc-turai gene for a-galactosidase in Lactobacillus plantarum ATCC 8014. Submitted for publication.

    Google Scholar 

  • Smid EJ, Starrenburg MJC, Mierau I, Sybesma W and Hugenholtz J (2001) Increase of folate levels in fermented foods. Innovations in Food Technology Feb/Mar, 13–15.

    Google Scholar 

  • Smimoff N and Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.

    Article  Google Scholar 

  • Soetaert W, Buchholz K and Vandamme EJ (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. In: Agro Food Ind. High-Tech (pp 41–44 ).

    Google Scholar 

  • Sokinenko EV (2001) Discovering the sweeping power of point mutations using a GIRAFF. Trends Microbiol. 9: 522–525.

    Article  Google Scholar 

  • Stingele F, Vincent SJF, Faber EJ, Newel JW, Kamerling JP and Neeser JR (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32: 1287–1295.

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. TIBTECH 16: 41–46.

    Article  CAS  Google Scholar 

  • Sybesma W, Hugenholtz J, Mierau I and Kleerebezem M (2001) Improved efficiency and reliability of RT-PCR using tag-extended RT primers and temperature gradient PCR. BioTechniques 31: 466–468.

    Google Scholar 

  • Sybesma W, van den Born E, Starrenburg M, Mierau I, Kleerebezem M, de Vos WM and Hugenholtz J (2002) Increased production of bioavailable folate by engineering of Lactococcus lactis Submitted for publication.

    Google Scholar 

  • van Kranenburg R, Marugg JD, van Swam II, Willem NJ and de Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387–397.

    Google Scholar 

  • van Kranenburg R, van Swam II, Marugg JD, Kleerebezem M and de Vos WM (1999a). Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J. Bacteriol. 181: 338–340.

    PubMed  Google Scholar 

  • van Kranenburg R, Vos HR, van Swam II, Kleerebezem M and de Vos WM (1999b) Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci: complementation, expression, and diversity. J. Bacteriol. 181: 6347–6353.

    PubMed  Google Scholar 

  • van Kranenburg R, Kleerebezem M and de Vos WM (2000) Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000. Plasmid 43: 130–136.

    Article  PubMed  Google Scholar 

  • Vaughan EE, van den Bogaard PT, Catzeddu P, Kuipers OP and de Vos WM (2001) J. Bacteriol. 183: 1184–1194.

    Article  PubMed  CAS  Google Scholar 

  • Vedamuthu ER and Neville JM (1986) Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl. Environ. Microbiol. 51: 1385–1386.

    Google Scholar 

  • Veenhoff LM and Poolman B (1999) Substrate recognition at the cytoplasmic and extracellular binding site of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 274: 33244–33250.

    Article  PubMed  CAS  Google Scholar 

  • Von Wright A and Tynkkynen S (1987) Construction of Streptococcus lactis subsp. lactis strains with a single plasmid associated with mucoid phenotype. Appl. Environ. Microbiol. 53: 1385–1386.

    Google Scholar 

  • Wald N (1991) Prevention of neural tube defects. Results of the Medical Research Council vitamin study. Lancet. 338: 131–137.

    Article  Google Scholar 

  • Weinstock GM, Smajs D, Hardham J and Norris SJ (2000) From microbial genome sequence to application. Res. Microbiol. 151: 158.

    Google Scholar 

  • Wren BW (2000) Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat. Rev. Genet. 1: 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Yao R, Schneider E, Ryan TJ and Galivan J (1996) Human gamma glutamyl hydrolase: cloning and characterization of the enzyme expressed in vitro. Proc. Natl. Acad. Sci. U.S.A. 93: 10134–10138.

    Google Scholar 

  • Zehner LR (1988) D-tagatose as a low-calorie carbohydrate sweetener and bulking agent. European Patent Application.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hugenholtz, J. et al. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics