Skip to main content

On the Stone — von Neumann Uniqueness Theorem and Its Ramifications

  • Chapter
John von Neumann and the Foundations of Quantum Physics

Part of the book series: Vienna Circle Institute Yearbook [2000] ((VCIY,volume 8))

Abstract

In the mid to late 1920s, the emerging theory of quantum mechanics had two main competing (and, initially, mutually antagonistic) formalisms — the wave mechanics of E. Schrödinger [61] and the matrix mechanics of W. Heisenberg, M. Born and P. Jordan [27][2][3].1 Though a connection between the two was quickly pointed out by Schrödinger himself — see paper III in [61] — among others, the folk-theoretic “equivalence” between wave and matrix mechanics continued to generate more detailed study, even into our times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Araki, “Hamiltonian formalism and the canonical commutation relations in quantum field theory”, J. Math. Phys., 1, 492–504 (1960).

    Article  Google Scholar 

  2. M. Born and P. Jordan, “Zur Quantenmechanik”, Zeitschr. f. Phys., 34, 858–888 (1925).

    Article  Google Scholar 

  3. M. Born, W. Heisenberg and P. Jordan, “Zur Quantenmechanik II”, Zeitschr. f. Phys., 35, 557–615 (1925).

    Article  Google Scholar 

  4. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volume 1 (Springer Verlag, Berlin) 1979, Volume 2 ( Springer Verlag, Berlin ) 1981.

    Book  Google Scholar 

  5. J.M. Chaiken, “Finite-particle representations and states of the canonical commutation relations”, Ann. Phys., 42, 23–80 (1967).

    Article  Google Scholar 

  6. P. Cartier, “Quantum mechanical commutation relations and theta functions”, in: Algebraic Groups and Discontinuous Subgroups, edited by A. Borel and G.D. Mostow ( American Mathematical Society, Providence, RI ) 1966, pp. 361–383.

    Chapter  Google Scholar 

  7. S. Cavallaro, G. Morchio and F. Strocchi, “A Generalization of the Stone-von Neumann theorem to non-regular representations of the CCR-algebra”, preprint (mp-arc 98–498).

    Google Scholar 

  8. J.M. Cook, “The Mathematics of second quantization”, Trans. Amer. Math. Soc., 74, 222–245 (1953).

    Article  Google Scholar 

  9. P.A.M. Dirac, “The Fundamental equations of quantum mechanics”, Proc. Roy. Soc, London, A109, 642–653 (1925).

    Article  Google Scholar 

  10. P.A.M. Dirac, “The Quantum theory of the emission and absorption of radiation”, Proc. Roy. Soc. London, 114, 243–265 (1927).

    Article  Google Scholar 

  11. J. Dixmier, “Sur la relation i(PQ — QP) = 1, Comp. Math., 13, 263–270 (1958).

    Google Scholar 

  12. G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory ( New York, John Wiley Sons ) 1972.

    Google Scholar 

  13. G.G. Emch, “Von Neumann’s uniqueness theorem revisited”, in: Mathematical Analysis and Applications, Part A, edited by L. Nachbin (Academic Press, New York ) 1981, pp. 361–368.

    Google Scholar 

  14. J.M.G. Fell, “The Dual spaces of C*-algebras”, Trans. Amer. Math. Soc., 94, 365–403 (1960).

    Google Scholar 

  15. M. Florig and S.J. Summers, “Further representations of the canonical commutation relations”, Proc. London Math. Soc., 80, 451–490 (2000).

    Article  Google Scholar 

  16. V. Fock, “Konfigurationsraum und zweite Quantelung”, Zeitschr. f. Phys., 75, 622–647 (1932).

    Article  Google Scholar 

  17. K.O. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields (Interscience Publishers, New York) 1953; see also Commun. Pure Appl. Math., 4, 161–224 (1951), ibid., 5, 1–56 (1952), ibid., 6, 1–72 (1953).

    Google Scholar 

  18. J. Fröhlich, “Verification of axioms for Euclidean and relativistic fields and Haag’s theorem in a class of P(0)2 models”, Ann. Inst. Henri Poincaré, 21, 271–317 (1974).

    Google Scholar 

  19. J. Glimm, “Type I C* -algebras”, Ann. Math., 73, 572–612 (1961).

    Article  Google Scholar 

  20. J. Glimm and A. Jaffe, “A AO quantum field theory without cutoffs, I”, Phys. Rev., 176, 1945–1951 (1968), II, Ann. Math., 91, 362–401 (1970), III, Acta Math., 125, 203–267 (1970), IV, J. Math. Phys., 13, 1568–1584 (1972).

    Article  Google Scholar 

  21. J. Glimm and A. Jaffe, Quantum Physics, (Springer Verlag, Berlin) 1981; Second, expanded edition appeared in 1987.

    Google Scholar 

  22. L. Gärding and A.S. Wightman, “Representations of the commutation relations”, Proc. Nat. Acad. Sci., 40, 622–626 (1954).

    Article  Google Scholar 

  23. H. Grosse and L. Pittner, “A Supersymmetric generalization of von Neumann’s theorem”, J. Math. Phys., 29, 110–118 (1988).

    Article  Google Scholar 

  24. R. Haag, “On quantum field theories”, Kong. Dan. Vidensk. Sels., Mat. Fys. Medd., 29, no. 12 (1955).

    Google Scholar 

  25. R. Haag, Local Quantum Physics, (Springer Verlag, Berlin) 1992; Second, expanded edition appeared in 1996.

    Google Scholar 

  26. R. Haag and D. Kastler, “An algebraic approach to quantum field theory”, J. Math. Phys., 5, 848–861 (1964).

    Article  Google Scholar 

  27. W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen”, Zeitschr. f. Phys., 33, 879–893 (1925).

    Article  Google Scholar 

  28. W. Heisenberg and W. Pauli, “Zur Quantendynamik der Wellenfelder”, Zeitschr. f. Phys., 56, 1–61 (1929), II, ibid., 59, 168–190 (1929).

    Google Scholar 

  29. H. Helson, Lectures on Invariant Subspaces ( Academic Press, New York ) 1964.

    Google Scholar 

  30. D. Hilbert, “J. von Neumann and L. Nordheim, Über die Grundlagen der Quantenmechanik”, Math. Ann., 98, 1–30 (1927).

    Article  Google Scholar 

  31. L. van Hove, “Les difficultés de divergence pour un modèle particulier de champ quantifié”, Physica, 18, 145–159 (1952).

    Article  Google Scholar 

  32. A. Iorio and G. Vitiello, “Quantum groups and von Neumann theorem”, Modern Phys. Lett. B, 8, 269–276 (1994).

    Article  Google Scholar 

  33. P. Jordan, “Über kanonische Transformationen in der Quantenmechanik”, Zeitschr. f. Phys., 37, 383–386 (1926).

    Article  Google Scholar 

  34. P.E.T. Jorgensen and R.T. Moore, Operator Commutation Relations (D. Reidel, Dordrecht ) 1984.

    Book  Google Scholar 

  35. J.R. Klauder, J. McKenna and E.J. Woods, “Direct-product representations of the canonical commutation relations”, J. Math. Phys., 7, 822–828 (1966).

    Article  Google Scholar 

  36. J.R. Klauder and B.-S. Skagerstam, editors, Coherent States: Applications to Physics and Mathematical Physics ( World Scientific, Singapore ) 1985.

    Google Scholar 

  37. A.N. Kochubei, “P-adic commutation relations”, J. Phys. A, 29, 6375–6378 (1996).

    Article  Google Scholar 

  38. L.H. Loomis, “Note on a theorem of Mackey”, Duke Math. J., 19, 641–645 (1952).

    Article  Google Scholar 

  39. G.W. Mackey, “A Theorem of Stone and von Neumann”, Duke Math. J., 16, 313–326 (1949).

    Article  Google Scholar 

  40. G.W. Mackey, “Borel structures in groups and their duals”, Trans. Amer. Math. Soc., 85, 134–165 (1957).

    Article  Google Scholar 

  41. G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (W.A. Benjamin, Inc., New York) 1968.

    Google Scholar 

  42. J. Manuceau, “C*-algébre de relations de commutation”, Ann. Inst. Henri Poincaré, 8, 139–161 (1968).

    Google Scholar 

  43. F.J. Murray and J. von Neumann, “On rings of operators”, Ann. Math., 37, 116–229 (1936); or in: J. von Neumann, Collected Works, Volume 3, edited by A.H. Taub ( Pergamon Press, New York and Oxford ) 1961, pp. 6–119.

    Google Scholar 

  44. J. von Neumann, “Mathematische Begründung der Quantenmechanik”, Nachr. Akad. Wiss. Göttingen, 1, 1–57 (1927); or in: J. von Neumann, Collected Works, Volume 1, edited by A.H. Taub ( Pergamon Press, New York and Oxford ) 1961, pp. 151–207.

    Google Scholar 

  45. J. von Neumann, “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104, 570578 (1931); or in: J. von Neumann, Collected Works, Volume 2, edited by A.H. Taub ( Pergamon Press, New York and Oxford ) 1961, pp. 221–229.

    Google Scholar 

  46. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer Verlag, Berlin) 1932; English translation: Mathematical Foundations of Quantum Mechanics ( Princeton University Press, Princeton ) 1955.

    Google Scholar 

  47. J. von Neumann, “Über einen Satz von Herrn M.H. Stone”, Ann. Math., 33, 567–573 (1932); or in: J. von Neumann, Collected Works, Volume 2, edited by A.H. Taub ( Pergamon Press, New York and Oxford ) 1961, pp. 287–293.

    Google Scholar 

  48. J. von Neumann, “On infinite direct products”, Compos. Math., 6, 1–77 (1938); or in: J. von Neumann, Collected Works, Volume 3, edited by A.H. Taub ( Pergamon Press, New York and Oxford ) 1961, pp. 323–399.

    Google Scholar 

  49. J. von Neumann, “Quantum mechanics of infinite systems”, unpublished manuscript dated 1937 and held in the J. von Neumann Archive of the Manuscript Division of the Library of Congress, Washington, D.C.; first published in this volume.

    Google Scholar 

  50. M. Proksch, G. Reents and S.J. Summers, “Quadratic representations of the canonical commutation relations”, Publ. Res. Inst. Math. Sci., Kyoto Univ., 31, 755–804 (1995).

    Article  Google Scholar 

  51. C.R. Putnam, Commutation Properties of Hilbert Space Operators ( Springer Verlag, Berlin ) 1967.

    Book  Google Scholar 

  52. H. Reeh, “A Remark concerning canonical commutation relations”, J. Math. Phys., 29, 15351536 (1988).

    Google Scholar 

  53. F. Rellich, “Der Eindeutigkeitssatz für die Lösungen der quantenmechanischen Vertauschungsrelationen”, Nachr. Akad. Wiss. Göttingen, Math. Phys., Kl. II, 11A, 107–115 (1946).

    Google Scholar 

  54. M.A. Rieffel, “On the uniqueness of the Heisenberg commutation relations”, Duke Math. J., 39, 745–752 (1972).

    Article  Google Scholar 

  55. D.W. Robinson, “The Ground state of the Bose gas”, Commun. Math. Phys., 1, 159–171 (1965).

    Article  Google Scholar 

  56. R. Schaflitzel, “Some particle representations of the canonical commutation relations”, Rep. Math. Phys., 25, 329–344 (1988).

    Article  Google Scholar 

  57. K. Schmüdgen, “On the Heisenberg commutation relations”, II, Publ. Res. Inst. Math. Sci., Kyoto Univ., 19, 601–671 (1983).

    Article  Google Scholar 

  58. K. Schmüdgen, “Operator representations of 14”, Publ. Res. Inst. Math. Sci., Kyoto Univ., 28, 1029–1061 (1992).

    Article  Google Scholar 

  59. K. Schmüdgen, “An Operator-theoretic approach to a cocycle problem in the complex plane”, Bull. London Math. Soc., 27, 341–346 (1995).

    Article  Google Scholar 

  60. R. Schrader, “Local operator products and field equations in P(0)2 theories”, Fortschr. d. Phys., 22, 611–631 (1974).

    Article  Google Scholar 

  61. E. Schrödinger, “Quantisierung als Eigenwertproblem, I”, Ann. Phys., 79, 361–376 (1926), II, ibid., 79, 489–527, III, ibid., 79, 734–756, IV, ibid., 80, 109–139; reprinted in: E. Schrödinger, Abhandlungen zur Wellenmechanik (J.A. Barth, Leipzig) 1928; English translation: Collected Papers on Wave Mechanics ( Blackie and Sons, London and Glasgow ) 1928.

    Google Scholar 

  62. S.S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Co., Evanston, IL ) 1961.

    Google Scholar 

  63. I.E. Segal, Mathematical Problems of Relativistic Physics ( American Mathematical Society, Providence, R.I. ) 1963.

    Google Scholar 

  64. I.E. Segal and R.A. Kunze, Integrals and Operators (McGraw-Hill, New York) 1968; Second, enlarged edition published by Springer Verlag in 1978.

    Google Scholar 

  65. J. Slawny, “On factor representations and the C*-algebra of canonical commutation relations”, Commun. Math. Phys., 24, 151–170 (1972).

    Article  Google Scholar 

  66. M.H. Stone, “Linear transformations in Hilbert space, III: Operational methods and group theory”, Proc. Nat. Acad. Sci. U.S.A., 16, 172–175 (1930).

    Article  Google Scholar 

  67. R.F. Streater and A.S. Wightman, PCT Spin and Statistics, and All That (Benjamin/Cummings Publ. Co., Reading, Mass.), 1964; Second, expanded edition published in 1978.

    Google Scholar 

  68. M. Takesaki, “Disjointness of the KMS states of different temperatures”, Commun. Math. Phys., 17, 33–41 (1970).

    Article  Google Scholar 

  69. M.E. Taylor, Noncommutative Harmonic Analysis ( American Mathematical Society, Providence, R.I. ) 1986.

    Google Scholar 

  70. H. Weyl, Zeitschr. f. Phys., 46, 1–46 (1927); see also H. Weyl, Gruppentheorie und Quantenmechanik (Hirzel, Leipzig) 1928; English translation: The Theory of Groups and Quantum Mechanics ( Dover, New York ) 1949.

    Google Scholar 

  71. H. Wielandt, “Über die Unbeschränktheit der Schrödingerschen Operatoren der Quantenmechanik”, Math. Ann., 121, 21 (1949).

    Article  Google Scholar 

  72. A.S. Wightman, “Hilbert’s sixth problem: Mathematical treatment of the axioms of physics”, in: Mathematical Developments Arising From Hilbert Problems, edited by F. Browder, ( American Mathematical Society, Providence, R.I. ) 1976, pp. 147–240.

    Google Scholar 

  73. A.S. Wightman and S.S. Schweber, “Configuration space methods in relativistic quantum field theory, I”, Phys. Rev., 98, 812–837 (1955).

    Article  Google Scholar 

  74. A. Wintner, “The Unboundedness of quantum-mechanical matrices, Phys., Rev., 71, 738–739 (1947).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Summers, S.J. (2001). On the Stone — von Neumann Uniqueness Theorem and Its Ramifications. In: Rédei, M., Stöltzner, M. (eds) John von Neumann and the Foundations of Quantum Physics. Vienna Circle Institute Yearbook [2000], vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2012-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2012-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5651-1

  • Online ISBN: 978-94-017-2012-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics