Skip to main content

Challenges in Turbulent Mixing with Combustion

  • Conference paper
IUTAM Symposium on Turbulent Mixing and Combustion

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 70))

  • 494 Accesses

Abstract

Turbulent combustion combines the complexities of turbulence and mixing, challenges not met in the twentieth century, with the complexity and subtlety of chemical kinetics. This discussion focuses on progress and some turbulent-mixing issues in chemically reacting flows stemming from experimental, modeling, and direct-numerical simulation (DNS) studies. The mixing transition will be discussed. DNS studies of the Rayleigh-Taylor instability in miscible fluids reveal an early-time diffusive growth and a strong sensitivity to initial conditions. Recent experiments address the assumption of isotropy in turbulence and mixing. Experiments in high-speed shear layers elucidate some effects of compressibility on the mixed-fluid field. Issues involving molecular-transport coefficients will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K. (1953) The Theory of Homogeneous Turbulence Cambridge U.P., London.

    Google Scholar 

  • Batchelor, G. K. (1959) Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113 – 133.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bernal, L. P., Breidenthal, R. E., Brown, G. L., Konrad, J. H. and Roshko, A. (1979) On the Development of Three-Dimensional Small Scales in Turbulent Mixing Layers. 2nd Int. Symposium on Turb. Shear Flows ( Springer-Verlag, NY, 1980 ), 305 – 313.

    Google Scholar 

  • Catrakis, H. J. and Dimotakis, P. E. (1996) Mixing in turbulent jets: scalar measures and isosurface geometry. J. Fluid Mech. 317, 369 – 406.

    Article  ADS  Google Scholar 

  • Cook, A. W. and Dimotakis, P. E. (2001) Transition stages of Rayleigh-Taylor instability between miscible fluids. J. Fluid Mech. 443, 69 – 99.

    Article  ADS  MATH  Google Scholar 

  • Cook, A. W., Dimotakis, P. E., Chapman, S. J. and Mattner, T. W. (2001) Corrigendum: Transition stages of Rayleigh-Taylor instability between miscible fluids. (in preparation).

    Google Scholar 

  • Dimonte, G. and Schneider, M. (2000) Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12, 304 – 321.

    Article  ADS  MATH  Google Scholar 

  • Dimotakis, P. E. (1991) Turbulent Free Shear Layer Mixing and Combustion. High Speed Flight Propulsion Systems, in Progress in Astronautics and Aeronautics 137 Ch. 5, 265 – 340.

    Google Scholar 

  • Dimotakis, P. E. (2000) The mixing transition in turbulence. J. Fluid Mech. 409, 69 – 98.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dimotakis, P. E. (2001) Recent advances in turbulent mixing. Mechanics for a New Millenium ( Kluwer AP, Netherlands ), 327 – 344.

    Google Scholar 

  • Dimotakis, P. E. and Catrakis, H. J. (1999) Turbulence, fractals, and mixing. Mixing: Chaos and Turbulence (Edited by, H. Chaté, E. Villermaux, and J.-M. Chomaz, Kluwer Academic/Plenum Publishers, New York, NY ), 59 – 143.

    Google Scholar 

  • Dimotakis, P. E., Catrakis, H. J. and Fourguette, D. C. (2001) Flow structure and optical beam propagation in high Reynolds number, gas-phase shear layers and jets. J. Fluid Mech. 433, 105 – 134.

    ADS  MATH  Google Scholar 

  • Duff, R. E., Harlow, F. H. and Hirt, C. W. (1962) Effects of Diffusion on Interface Instability Between Gases. Phys. Fluids 5, 417 – 425.

    Article  ADS  MATH  Google Scholar 

  • Egolfopoulos, F. N., Dimotakis, P. E. and Bond, C. L. (1996) On Strained Flames with Hypergolic Reactants: The H2/NO/F2 System in High-Speed, Supersonic and Subsonic Mixing-Layer Combustion. Twenty-Sixth Symposium (International) on Combustion The Combustion Institute, Pittsburgh, 2885 – 2893.

    Google Scholar 

  • Giovangigli, V. (1999) Multicomponent flow modeling. Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  • Hall, J. L., Dimotakis, P. E. and Rosemann, H. (1991) Some measurements of molecular mixing in compressible turbulent mixing layers. AIAA 22nd Fluid Dynamics, Plasma Dynamics, and Lasers Conference Paper 91–1719.

    Google Scholar 

  • Hinze, J. O. (1975) Turbulence. 2nd ed., McGraw-Hill.

    Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1964) Molecular Theory of Gases and Liquids. John Wiley, NY.

    Google Scholar 

  • Konrad, J. H. (1976) An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Applications to Diffusion-Limited Chemical Reactions. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Koochesfahani, M. M. and Dimotakis, P. E. (1986) Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech. 170, 83 – 112.

    Article  ADS  Google Scholar 

  • Kuzo, D. M. (1995) An Experimental Study of the Turbulent Transverse Jet. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Lundgren, T. S. (1982) Strained Spiral Vortex Model for Turbulent Fine Structure. Phys. Fluids 25, 2193 – 2203.

    Article  ADS  MATH  Google Scholar 

  • Misra, A. and Pullin, D. I. (1997) A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 2443 – 2454.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Monin, A. S. and Yaglom, A. M. (1975) Statistical Fluid Mechanics: Mechanics of Turbulence II Ed. J. Lumley, MIT Press, Cambridge, MA.

    Google Scholar 

  • Overholt, M. R. and Pope, S. B. (1996) Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids 8, 3128 – 3148.

    Article  ADS  MATH  Google Scholar 

  • Peters, N. (1984) Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Prog. Energy Combust. Sci. 10, 319 – 339.

    Article  Google Scholar 

  • Pope, S. B. (2000) Turbulent Flows. Cambridge U. P., Cambridge, U.K.

    Google Scholar 

  • Pullin, D. I. (2000) A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 2311 – 2319.

    Article  MathSciNet  ADS  Google Scholar 

  • Pullin, D. I. and Lundgren, T. S. (2001) Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids 13, 2553 – 2563.

    Article  ADS  Google Scholar 

  • Pullin, D. I. and Saffman, P. G. (1994) Reynolds stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence. Phys. Fluids 6, 1787 – 1796.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shan, J. W. (2001) Mixing and Isosurface Geometry in Turbulent Tranverse Jets. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Shan, J. W. and Dimotakis, P. E. (2001) Turbulent mixing in liquidphase transverse jets. http://resolver.library.caltech.edu/ CaltechGalcitFM:2001.006.

    Google Scholar 

  • Slessor, M. D. (1998) Aspects of turbulent-shear-layer dynamics and mixing. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L. (1972) A First Course in Turbulence. MIT Press.

    Google Scholar 

  • Thompson, P. A. (1972) Compressible-Fluid Dynamics. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Wang, H. (2000) Effect of transiently bound collision on binary diffusion coefficients of free radical species. Chem. Phys. Ltrs. 325, 661 – 667.

    Article  ADS  Google Scholar 

  • Yang, Z., Yang, B. and Wang, H. (2001) The influence of H-atom diffusion coefficient on laminar flame simulation. 2nd Joint Meeting of the U.S. Sections of the Combustion Institute (Oakland, CA).

    Google Scholar 

  • Zel’dovich, Ya. B. and Raizer, Yu. P. (1967) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. H. Academic Press, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dimotakis, P.E. (2002). Challenges in Turbulent Mixing with Combustion. In: Pollard, A., Candel, S. (eds) IUTAM Symposium on Turbulent Mixing and Combustion. Fluid Mechanics and Its Applications, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1998-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1998-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6074-7

  • Online ISBN: 978-94-017-1998-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics