Skip to main content

The Electrified Interface of the Soil Solid Phase

B. Effect of Surface Heterogeneity

  • Chapter
Interactions at the Soil Colloid — Soil Solution Interface

Part of the book series: NATO ASI Series ((NSSE,volume 190))

Abstract

It is appropriate to follow the treatment in Chapter 2 of the implications of the ‘ordered’ arrangement of the different layers of adsorbate(s) at a solid surface with a discussion of the effects of possible lateral heterogeneities of such surfaces. In soil there are several reasons for the presence of such heterogeneities. These include the diversity of the materials of the soil solid phase, the presence of different faces on the crystalline constituents of the solid phase, and the heterogeneity which is associated with small scale disorder in crystal lattices. Uneven faces of crystals are included in this small scale disorder. The latter heterogeneities will, no doubt, be associated with the manner in which the formation of the crystals took place, and in particular with the presence of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolt, G.H. and Van Riemsdijk, W.H. 1982. Ion adsorption on inorganic variable charge constituents. In G.H. Bolt (ed.), Soil Chemistry. B. Physico Chemical Models. Elsevier, Amsterdam, pp. 459–504.

    Google Scholar 

  • Bolt, G.H. and Van Riemsdijk, W.H. 1987. Surface chemical processes in soil. In W. Stumm (ed.), Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. Wiley, New York, pp. 127–163.

    Google Scholar 

  • Cerofolini, G.F. 1974. Localized adsorption on heterogeneous surfaces. Thin Solid Films 23, 129–152.

    Article  CAS  Google Scholar 

  • Dzombak, D.A., Fish, W. and Morel, F.M.M. 1986a. Metal-humate interactions. I. Discrete ligand and continuous distribution models. Environ. Sci. Technol. 20, 669–675.

    Article  CAS  Google Scholar 

  • Dzombak, D.A., Fish, W. and Morel, F.M.M. 1986b. Metal-humate interactions. II. Application and comparison of models. Environ. Sci. Technol. 20, 676–683.

    Article  Google Scholar 

  • Ephraim, J., Alegret, S., Mathuthu, A., Bicking, M., Malcolm, R.L. and Marinsky, J.A. 1986. A united physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). II. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid. Environ. Sci. Technol. 20, 354–366.

    Article  CAS  Google Scholar 

  • Harris, L.B. 1968. Adsorption on a patchwise heterogeneous surface. I. Mathematical analysis of the step-function approximation to the local isotherm. Surface Sci. 10, 129–145.

    Article  Google Scholar 

  • Harris, L.B. 1969a. Adsorption on a patchwise heterogeneous surface. II. Heats of adsorption from the condensation approximation. Surface Sci, 13, 377–392.

    Article  CAS  Google Scholar 

  • Harris, L.B. 1969b. Adsorption on a patchwise heterogeneous surface. III. Errors incurred in using the condensation approximation to estimate the energy distribution on a Hill-De Boer adsorbent. Surface Sci. 15, 182–187.

    Article  CAS  Google Scholar 

  • Healy, T.W. and White, C.R. 1978. Ionizable surface group models of aqueous interfaces. Adv. Colloid Interface Sci. 9, 309–345.

    Article  Google Scholar 

  • Hiemstra, T., Van Riemsdijk, W.H. and Bruggenwert, M.G.M. 1987. Proton adsorption mechanism at a gibbsite and aluminum oxide solid/solution interface. Neth. J. Agric. Sci. 35, 281–294.

    CAS  Google Scholar 

  • House, W.A. and Jaycock, M.J. 1977. Determination of the surface heterogeneity of solid particulates using the patchwise adsorption model. J. Chem. Soc. Faraday Trans. 173, 942–949.

    Google Scholar 

  • House, W.A. and Jaycock, M.J. 1978. A numerical algorithm for the determination of the adsorptive energy distribution function from isotherm data. Colloid and Polymer Sci. 256, 52–61.

    Article  CAS  Google Scholar 

  • House, W.A. 1983. Adsorption on heterogeneous surfaces. In D.H. Everett (ed.), Colloid Science. Specialist Periodical Reports, Vol. 4. Chemical Society, London.

    Google Scholar 

  • Jaroniec, M. 1983. Physical adsorption on heterogeneous surfaces. Adv. Colloid Interface Sci. 18, 149–225.

    Article  CAS  Google Scholar 

  • Kinniburgh, D.G., Barker, J.A. and Whitfield, M. 1983. A comparison of some simple adsorption isotherms for describing divalent cation adsorption by ferrihydrite. J. Colloid Interface Sci. 95, 370–384.

    Article  CAS  Google Scholar 

  • Koopal, L.K. and Van Riemsdijk, W.H. 1989. Electrosorption on random and patchwise heterogeneous surfaces. Electrical double layer effects. J. Colloid Interface Sci. 128, 188–192.

    Article  CAS  Google Scholar 

  • Koopal, L.K. and Vos, C.H.W. 1985. Calculations of the adsorption energy distribution from the adsorption isotherm by singular value decomposition. Colloids Surf 14, 87–95.

    Article  CAS  Google Scholar 

  • Koopal, L.K., Van Riemsdijk, W.H. and Roffey, M.G. 1987. Surface ionization and complexation models: A comparison of methods for determining model parameters. J. Colloid Interface Sci. 118, 117–136.

    Article  CAS  Google Scholar 

  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, silica and platinum. J. Amer. Chem. Soc. 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Noble, B. 1977. The numerical solution of integral equations. In D. Jacobs (ed.), The State of the Art in Numerical Analysis. Academic Press, London. pp. 915–966.

    Google Scholar 

  • Rudzinsky, W., Jagiello, J. and Grillet, Y. 1982. Physical adsorption of gases on heterogeneous solid surfaces: Evaluation of the adsorption energy distribution from adsorption isotherms and heats of adsorption. J. Colloid Interface Sci. 87, 478–491.

    Article  Google Scholar 

  • Sacher, R.S. and Morrison, I.D. 1979. An improved CAEDMON program for the adsorption isotherms of heterogeneous substrates. J. Colloid Interface Sci. 70, 153–166.

    Article  CAS  Google Scholar 

  • Sips, R. 1948. On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495.

    Article  CAS  Google Scholar 

  • Sips, R. 1950. On the structure of a catalyst surface. II. J. Chem Phys. 18, 1024–1026.

    Article  CAS  Google Scholar 

  • Sposito, G. 1986. Sorption of trace metals by humic materials in soils and natural waters. CRC Critical Reviews in Environ. Control 16, 193–229.

    Article  CAS  Google Scholar 

  • Toth, J. 1971. State equations of the solid-gas interface layers. Acta Chim. Hung. 69, 311–328.

    CAS  Google Scholar 

  • Toth, J., Rudzinsky, W., Waksmundzki, A., Jaroniec, M. and Solokowski, S. 1974. Adsorption of gases on heterogeneous solid surfaces: The energy distribution corresponding to a new equation for monolayer adsorption. Acta Chim. Hung. 82, 11–21.

    CAS  Google Scholar 

  • Van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K. and Blaakmeer, J. 1986. Electrolyte adsorption on heterogeneous surfaces: Adsorption models. J. Colloid Interface Sci. 109, 219–228.

    Article  Google Scholar 

  • Van Riemsdijk, W.H., De Wit, J.C.M., Koopal, L.K. and Bolt, G.H. 1987a. Metal ion adsorption on heterogeneous surfaces: Adsorption models. J. Colloid Interface Sci. 116, 511–522.

    Article  Google Scholar 

  • Van Riemsdijk, W.H., Koopal, L.K. and De Wit, J.C.M. 1987b. Heterogeneity and electrolyte adsorption: Intrinsic and electrostatic effects. Nedra. J. Agric. Sci. 35, 241–257.

    Google Scholar 

  • Vos, C.H. and Koopal, L.K. 1985. Surface heterogeneity analysis by gas adsorption: Improved calculation of the adsorption energy distribution using an algorithm named CAESAR. J. Colloid Interface Sci. 105, 183–196.

    Article  CAS  Google Scholar 

  • Westall, J., Zachary, J.L. and Morel, F. 1976. MINEQL - A computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical Note No. 18. Ralph M. Parsons Laboratory, M. I. T., Cambridge, Massachusetts.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K. (1991). The Electrified Interface of the Soil Solid Phase. In: Bolt, G.H., De Boodt, M.F., Hayes, M.H.B., McBride, M.B., De Strooper, E.B.A. (eds) Interactions at the Soil Colloid — Soil Solution Interface. NATO ASI Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1909-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1909-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4081-7

  • Online ISBN: 978-94-017-1909-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics