Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Microcapsules are referred to capsules of spherical shape with a diameter of about 100 to 1000 pm. Besides traditional capsules with a well defined shell and core structure, encapsulation in microbeads without a distinct membrane has also been successful in certain applications. For immobilisation of living cells such as bacteria, yeast or mammalian cells, the encapsulation needs to be performed under relative mild conditions, depending on the cell type. The capsules or beads should be semipermeable to allow diffusion of oxygen and nutrients into the cells inside the capsules and waste products out of the capsules. For immunoisolation purposes, the capsule must be impermeable to host cells and soluble components of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogelsang, C.; Husby, A. and fstgaard, K. (1997) Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SBQ/alginate gel entrapment. Water Res. 31: 1659–1664.

    Article  CAS  Google Scholar 

  2. King, V.A. and Zall, R.R. (1983) Ethanol fermentation of whey using calcium alginate entrapped yeasts. Process Biochem. 12: 17–30.

    Google Scholar 

  3. Klinkenberg, G.; Lystad, K.Q.; Levine, D.W. and Dyrset, N. (2001) pH-controlled cell release and biomass distribution of alginate-immobilized Lactococcus lactis subsp lactis. Journal of Appl. Microbiol. 91: 705–714.

    Google Scholar 

  4. Larisch, B.C.; Poncelet, D.; Champagne, C.P. and Neufeld, R.J. (1994) Microencapsulation of Lactococcus-lactis subsp cremoris. J. Microencapsul. 11: 189–195.

    Article  CAS  Google Scholar 

  5. Jarvis, A.P. and Grdima, T.A. (1983) Production of biologicals (interferon) from microencapsulated living cells. Biotechn. 1: 24–27.

    Article  Google Scholar 

  6. Brodelius, P. and Mosbach, K. (1979) Immobilization of plant cells. Adv. Appl. Microbiol. 28: 1–26.

    Article  Google Scholar 

  7. de Vos, R. and van Schilfgaarde, R. (1999) Biocompatibility issues. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell encapsulation technology and therapeutics. Birkhäuser, Boston; pp. 63–78.

    Chapter  Google Scholar 

  8. DeVos, P.; DeHaan, B.J. and VanSchilfgaarde, R. (1998) Is it possible to use the standard alginate-PLL procedure for production of small capsules? Transplant. Proc. 30: 492–493.

    CAS  Google Scholar 

  9. Prokop, A.; Hunkeler, D.; DiMari, S.; Haralson, M.A. and Wang, T.G. (1998) Water soluble polymers for immunoisolation I: Complex coacervation and cytotoxicity. Advances in Polymer Science 136: 1–51.

    Article  CAS  Google Scholar 

  10. Hunkeler, D. (1997) Polymers for bioartificial organs. Trends Polymer Sci. 5: 286–293.

    CAS  Google Scholar 

  11. Babensee, J.E.; Anderson, J.M.; McIntire, L.V. and Mikos, A.G. (1998) Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 33: 111–139.

    CAS  Google Scholar 

  12. Chaikof, E.L. (1999) Engineering and material considerations in islet cell transplantation. Annual Review of Biomedical Engineering 1: 103–127.

    Article  CAS  Google Scholar 

  13. Li, R.H. (1998) Materials for immunoisolated cell transplantation. Advanced Drug Delivery Reviews 33: 87–109.

    Article  Google Scholar 

  14. Uludag, H.; DeVos, P. and Tresco, P.A. (2000) Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 42: 29–64.

    CAS  Google Scholar 

  15. Dautzenberg, H.; Schuldt, U.; Grasnick, G.; Karle, P.; Muller, P.; Lohr, M.; Pelegrin, M.; Piechaczyk, M.; Rombs, K.V.; Gunzburg, W.H.; Salmons, B. and Sailer, R.M. (1999) Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Ann. N.Y. Acad. Sci. 875: 46–63.

    Article  CAS  Google Scholar 

  16. Lacik, 1.; Brissova, M.; Anilkumar, A.V.; Powers, A.C. and Wang, T. (1998) New capsule with tailored properties for the encapsulation of living cells. J. Biomed. Mater. Res. 39: 52–60.

    Article  Google Scholar 

  17. Wang, T.; Lacik, 1.; Brissova, M.; Anilkumar, A.V.; Prokop, A.; Hunkeler, D.; Green, R.; Shahrokhi, K. and Powers, A.C. (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnol. 15: 358–362.

    CAS  Google Scholar 

  18. Lim, F. and Sun, A.M. (1980) Microencapsulated islets as a bioartificial endocrine pancreas. Science 210: 908–910.

    Article  CAS  Google Scholar 

  19. Vandenbossche, G.M.R.; Bracke, M.E.; Cuvelier, C.A.; Bortier, H.E.; Mareel, M.M. and Remon, J.P. (1993) Host reaction against empty alginate-polylysine microcapsules. Influence of preparation procedure. J. Pharm. Pharmacol. 45: 115–120.

    Article  CAS  Google Scholar 

  20. Thu, B.; Bruheim, P.; Espevik, T.; SmidsrOd, O.; Soon-Shiong, P. and Skjäk-Bræk, G. (1996) Alginate polycation microcapsules. II. Some functional properties. Biomaterials 17: 1069–1079.

    Article  CAS  Google Scholar 

  21. Weber, C.J.; Kapp, J.A.; Hagler, M.K.; Safley, S.; Chryssochoos, J.T. and Chaikof, E.L. (1999) Longterm survival of poly-L-lysine-algiante microencapsulated xenografts in spontaneous diabetic NOD mice. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell encapsulation technology and therapeutics. Birkhäuser, New York/Boston; pp. 117–137.

    Chapter  Google Scholar 

  22. Pommersheim, R.; Schrezenmeir, J. and Vogt, W. (1994) Immobilization of enzymes by multilayer microcapsules. Macromolecular Chemistry and Physics 195: 1557–1567.

    Article  CAS  Google Scholar 

  23. Schneider, S.; Feilen, P.J.; Slotty, V.; Kampfner, D.; Preuss, S.; Berger, S.; Beyer, J. and Pommersheim, R. (2001) Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22: 1961–1970.

    Article  CAS  Google Scholar 

  24. Sakai, S.; Ono, T.; ljima, H. and Kawakami, K. (2000) Control of molecular weight cut-off for immunoisolation by multilayering glycol chitosan-alginate polyion complex on alginate-based microcapsules. J. Microencapsul. 17: 691–699.

    Article  CAS  Google Scholar 

  25. Sawhney, A.S. and Hubbell, J.A. (1992) Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(L-lysine)-alginate microcapsule membranes. Biomaterials 13: 863–870.

    Article  CAS  Google Scholar 

  26. Calafiore, R.; Basta, G.; Luca, G.; Boselli, C.; Bufalari, A.; Bufalari, A.; Cassarani, M.P.; Giustozzi, G.M. and Brunetti, P. (1999) Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann. N.Y. Acad. Sci. 875: 219–232.

    Article  CAS  Google Scholar 

  27. Thu, B.; Bruheim, P.; Espevik, T.; Smidsrod, O.; Soon-Shiong, P. and Skjäk-Bræk, G. (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17: 1031–1040.

    Article  CAS  Google Scholar 

  28. Vandenbossche, G.M.R.; Van Oostveld, P.; Deemester, J. and Remon, J.P. (1993) The molecular-weight cutoff of microcapsules is determined by the reaction between alginate and polylysine. Biotechnol. Bioeng. 42: 381–386.

    Article  CAS  Google Scholar 

  29. Lanza, R.P.; Kuhtreiber, W.M.; Ecker, D.; Staruk, J.E. and Chick, W.L. (1995) Xenotransplantation of porcine and bovine islets without immunosupressing using uncoated alginate microspheres. Transplantation 59: 1377–1384.

    Article  CAS  Google Scholar 

  30. Zekorn, T.D.C.; Horcher, A.; Siebers, U.; Schnettler, R.; Hering, B.; Zimmermann, U.; Bretzel, R.G. and Federlin, K. (1992) Barium-cross-linked alginate beads: A simple one-step-method for successful immuno siolated transplantation of islets of Langerhans. Acta Diabetol. 29: 99–106.

    Article  Google Scholar 

  31. Lanza, R.P.; Ecker, D.M.; Kuhtreiber, W.M.; Marsh, J.P.; Ringeling, J. and Chick, W.L. (1999) Transplantation of islets using microencapsulation: studies in diabetic rodents and dogs. J. Mol. Med. 77: 206–210.

    Article  CAS  Google Scholar 

  32. Lanza, R.P.; Kuhtreiber, W.M.; Ecker, D.M.; Marsh, J.P.; Staruk, J.E. and Chick, W.L. (1996) A simple method for xenotransplanting cells and tissues into rats using uncoated alginate microreactors. Transplant Proc. 28: 835–835.

    CAS  Google Scholar 

  33. Duvivier-Kali, V.F.; Abulkadir, O.; Parent, R.J.; O’Neil, J.J. and Weir, G.C. (2001) Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50: 1698–1704.

    Article  CAS  Google Scholar 

  34. Birnbaum, S.; Pendelton, R.; Larsson, P.O. and Mosbach, K. (1981) Covalent stabilisation of algiante gel for the entrapment of living whole cells. Biotechnol. Lett. 3: 393–400.

    Article  CAS  Google Scholar 

  35. Soon-Shiong, P.; Desai, N.P.; Sanford, P.A.; Heitz, R. and Sojomihardjo, S. (1993) Crosslinkable polysaccharides, polycations and lipids useful for encapsulation and drug release. Patent PCT/US92/09364. World International Property Organization; pp. 1–52.

    Google Scholar 

  36. Hertzberg, S.; Moen, E.; Vogelsang, C. and ostgaard, K. (1995) Mixed photo-cross-linked polyvinyl-alcohol and calcium-alginate gels for cell entrapment. Appl. Microbiol. Biotechnol. 43: 10–17.

    Article  CAS  Google Scholar 

  37. Iwata, H. and Ikada, Y. (1999) Agarose. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell encapsulation technology and therapeutics. Birkhäuser, New York/Boston; pp. 97–107.

    Chapter  Google Scholar 

  38. Tun, T.; Inoue, K.; Hayashi, H.; Aung, T.; Gu, Y.J.; Doi, R.; Kaji, H.; Echigo, Y.; Wang, W.J.; Setoyama, H.; Imamura, M.; Maetani, S.; Morikawa, N.; Iwata, H. and Ikada, Y. (1996) A newly developed three-layer agarose microcapsule for a promising biohybrid artificial pancreas: Rat to mouse xenotransplantation. Cell Transplantation 5: S59 - S63.

    Article  CAS  Google Scholar 

  39. Shoichet, M.S.; Li, R.H.; White, M.L. and Winn, S.R. (1996) Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnol. Bioeng. 50: 374–381.

    Article  CAS  Google Scholar 

  40. Murano, E. (2000) Natural gelling polysaccharides: indispensable partners in bioencapsulation technology. Minerva Biotec. 12: 213–222.

    Google Scholar 

  41. Kurillova, L.; Gemeiner, P.; Ilaysky, M.; Stefuca, V.; Polakovic, M.; Welwardova, A. and Toth, D. (1992) Calcium pectate gel beads for cell entrapment. 4. Properties of stabilized and hardened calcium pectate gel beads with and without cells. Biotechnol. Appl. Biochem. 16: 236–251.

    CAS  Google Scholar 

  42. Poncelet, D.; Desmet, B.P.; Beaulieu, C.; Huguet, M.L.; Fournier, A. and Neufeld, R.J. (1995) Production of alginate beads by emulsification internal gelation. 2. Physicochemistry. App. Microbiol. Biotechnol. 43: 644–650.

    Article  CAS  Google Scholar 

  43. Poncelet, D.; Lencki, R.; Beaulieu, C.; Halle, J.P.; Neufeld, R.J. and Fournier, A. (1992) Production of alginate beads by emulsification internal gelation. 1. Methodology. Appl. Microbiol. Biotechnol. 38: 39–45.

    CAS  Google Scholar 

  44. Dulieu, C.; Poncelet, D. and Neufeld, R. (1999) Encapsulation and immobilization techniques. In: Kiihtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell encapsulation technology and therapeutics. Birkhäuser, New York/Boston; pp. 3–17.

    Chapter  Google Scholar 

  45. Serp, D.; Cantana, E.; Heinzen, C.; von Stockar, U. and Maison, I.W. (2000) Caracterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70: 41–53.

    Article  CAS  Google Scholar 

  46. Priisse, U.; Dalluhn, J.; Breford, J. and Vorlop, K.D. (2000) Production of spherical beads bu JetCutting. Chem. Eng. Technol. 23: 1105–1110.

    Article  Google Scholar 

  47. Goosen, M.F.A.; Al-Ghafri, A.S.; El Mardi, O.; Al-Belushi, M.LJ.; Al-Hajri, H.A.; Mahmoud, E.S.E. and Consolacion, E.C. (1997) Electrostatic droplet generation for encapsulation of somatic tissue: Assesment of high-voltage power supply. Biotechnol. Prog. 13: 497–502.

    Article  CAS  Google Scholar 

  48. Halle, J.P.; Leblond, F.A.; Pariseau, J.F.; Jutras, P.; Brabant, M.J. and Lepage, Y. (1994) Studies on small (300 pm) microcapsules: II–Parameters governing the production of algiante beads by high voltage electrostatic pulses. Cell Transplant. 3: 365–372.

    CAS  Google Scholar 

  49. Pjanovic, R.; Goosen, M.F.A.; Nedovic, V. and Bugarski, B. (2000) Immobilization/encapsualtion of cells using electrostatic droplet generator. Minerva Biotec. 12: 241–248.

    Google Scholar 

  50. Strand, B.L.; Gàserod, O.; Kulseng, B.; Espevik, T. and Skjâk-Bræk, G. (2002) Alginate-polylysinealginate microcapsules — effect of size reduction on capsule properties. J. Microencapsul. 19: 615–630.

    Article  CAS  Google Scholar 

  51. Klokk, T.I. and Melvik, J.E. (2002) Controlling the size of alginate gel beads by use of a high electrostatic potential. J. Microencapsul. 19: 415–424.

    Article  CAS  Google Scholar 

  52. Colton, C.K. (1995) Implantable biohybrid artificial organs. Cell Transplant. 4: 415–436.

    Article  CAS  Google Scholar 

  53. Chicheportiche, D. and Reach, G. (1988) In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 31: 54–57.

    CAS  Google Scholar 

  54. Poncelet, D. and Neufeld, R.J. (1989) Shear breakage of nylon membrane microcapsules in a turbine reactor. Biotechnol. Bioeng. 33: 95–103.

    Article  CAS  Google Scholar 

  55. Robitaille, R.; Pariseau, J.F.; Leblond, F.; Lamoureux, M.; Lepage, Y. and Halle, J.P. (1999) Studies on small (350 gm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J. Biomed. Mater. Res. 44: 116–120.

    Article  CAS  Google Scholar 

  56. Leblond, F.A.; Simard, G.; Henley, N.; Rocheleau, B.; Huet, P.M. and Halle, J.P. (1999) Studies on smaller (similar to 315 mu M) microcapsules: IV. Feasibility and safety of intrahepatic implantations of small alginate poly-L-lysine microcapsules. Cell Transplant. 8: 327–337.

    CAS  Google Scholar 

  57. Haug, A.; Larsen, B. and Smidsrod, O. (1966) A study of the constitution of alginic acid by partial hydrolysis. Acta Chem. Scand. 20: 183–190.

    Article  CAS  Google Scholar 

  58. Smidsrod, O. and Skjâk-Bræk, G. (1990) Alginate as immobilization matrix for cells. Trends Biotechnol. 8: 71–78.

    Article  CAS  Google Scholar 

  59. Govan, J.R.W.; Fyfe, J.A.M. and Jarman, T.R. (1981) Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendonica. J. Gen. Microbiol. 125: 217–220.

    CAS  Google Scholar 

  60. Skjâk-Bræk, G. and Larsen, B. (1985) Biosynthesis of alginate: Purification and characterisation of mannuronan C-5-epimerase from Azotobacter vinelandii. Carbohydr. Res. 139: 273–283.

    Google Scholar 

  61. Ertesvâg, H.; HOidal, H.K.; Hals, I.K.; Rian, A.; Doseth, B. and Valla, S. (1995) A family of modular type mannuronan c-5-epimerase genes controls alginate structure in azotobacter-vinelandii. Mol. Microbiol. 16: 719–731.

    Article  Google Scholar 

  62. Ertesvâg, H.; HOidal, H.K.; Schjerven, H.; Svanem, B.I.G. and Valla, S. (1999) Mannuronan C-5Epimerases and their application for in Vitro and in Vivo design of new alginates useful in biotechnology. Metabol. Eng. 1: 262–269.

    Article  Google Scholar 

  63. Smidsrod, O. (1974) Molecular basis for some physical properties of alginates in the gel state. J. Chem. Soc. Farad. Transact. 57: 263–274.

    Google Scholar 

  64. Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C. and Thom, D. (1973) Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32: 195–198.

    Article  CAS  Google Scholar 

  65. Stokke, B.T.; Smidsrod, O.; Zanetti, F.; Strand, W. and Skjâlc-Bræk, G. (1993) Distribution of uronate residues in alginate chains in relation to alginate gelling properties. 2. Enrichment of beta-D-mannuronic acid and depletion of alpha-L-guluronic acid in sol fraction. Carbohydr. Polymers 21: 39–46.

    Article  CAS  Google Scholar 

  66. Kohn, R. and Larsen, B. (1972) Preparation of water-soluble polyuronic acids and their calcium salts, and the determination of calcium ion activity in relation to the degree of polymerization. Acta Chem. Scand. 26: 2455–2468.

    Article  CAS  Google Scholar 

  67. Martinsen, A.; Skjâk-Bræk, G. and Smidsrßd, O. (1989) Alginate as immobilization material: 1. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33: 79–89.

    Article  CAS  Google Scholar 

  68. Smidsrod, O. (1973) Some physical properties of alginates in solution and in the gel state. Thesis. NTNF, Trondheim,.

    Google Scholar 

  69. Schlemmer, U. (1989) Studies of the Binding of copper, zinc and calcium to pectin alginate carrageenan and gum guar in HCO3–CO2 buffer. Food Chem. 32: 223–234.

    Article  CAS  Google Scholar 

  70. Skjâk-Bræk, G. and Martinsen, A. (1991) Applications of some algal polysaccharides in biotechnology. In: Guiry, M.D. and Blunden, G. (Eds.) Seaweed Resources in Europe: Uses and Potential. John Wiley Sons Ltd.; pp. 219–257.

    Google Scholar 

  71. Rochefort, W.E.; Regh, T. and Chau, P.C. (1986) Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol. Lett. 8: 115–120.

    Article  CAS  Google Scholar 

  72. Andresen, 1.; Skipnes, O.; Smidsrod, O.; fstgaard, K. and Hemmer, P.C. (1977) Some biological functions of matrix components in benthic algae in relation to their chemistry and the composition of seawater. ACS Symp. Series 48: 361–381.

    Google Scholar 

  73. yaas, J.; Storry, L.; Svendsen, H. and Levine, D.W. (1995) The effective diffusion-coefficient and the distribution constant for small molecules in calcium-alginate gel beads. Biotechnol. Bioeng. 47: 492–500.

    Article  Google Scholar 

  74. Tanaka, H.; Matsumura, M. and Veliky, I.A. (1984) Diffusion characteristics in Ca-alginate gel beads. Biotechnol. Bioeng. 26: 53–58.

    Article  CAS  Google Scholar 

  75. Martinsen, A.; Storrs), L. and Skjâk-Bræk, G. (1992) Alginate as immobilization material. 3. Diffusional properties. Biotechnol. Bioeng. 39: 186–194.

    Article  CAS  Google Scholar 

  76. Gombotz, W.R. and Wee, S.F. (1998) Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267–285.

    CAS  Google Scholar 

  77. Kulseng, B.; Thu, B.; Espevik, T. and Skjâk-Bræk, G. (1997) Alginate polylysine capsules as an immune barrier: Permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant. 6: 387–394.

    Article  CAS  Google Scholar 

  78. Gâserod, O.; Sannes, A. and Skjâk-Bræk, G. (1999) Microcapsules of alginate-chitosan II. A study of a capsule stability and permeability. Biomaterials 20: 773–783.

    Article  Google Scholar 

  79. Rilling, P.; Walter, T.; Pommersheim, R. and Vogt, W. (1997) Encapsulation of cytochrome C by multilayer microcapsules. A model for improved enzyme immobilization. J. Membrane Sci. 129: 283–287.

    Article  CAS  Google Scholar 

  80. Huguet, M.L.; Neufeld, R.J. and Dellacherie, E. (1996) Calcium-alginate beads coated with polycationic polymers: Comparison of chitosan and DEAE-dextran. Process Biochem. 39: 347–353.

    Article  Google Scholar 

  81. Stokke, B.T.; Draget, K.i.; Smidsrod, O.; Yuguchi, Y.; Urakawa, H. and Kajiwara, K. (2000) Small-angle X-ray scattering and rheological characterization of alginate gels. 1. Ca-alginate gels. Macromolecules 33: 1853–1863.

    Article  CAS  Google Scholar 

  82. Stokke, B.T.; Smidsrod, O.; Bruheim, P. and Skjâk-Bræk, G. (1991) Distribution of uronate residues in algiante chains in relation to algiante gelling properties. Macromolecules 24: 4637–4645.

    Article  CAS  Google Scholar 

  83. Thu, B.; Gâserod, O.; Paus, D.; Mikkelsen, A.; Skjâk-Bræk, G.; Toffanin, R.; Vittur, F. and Rizzo, R. (2000) Inhomogenious alginate gel spheres: An assesment of the polymer gradients by synchrotron radiation-induced X-ray emmision, magnetic resonance microimaging, and mathematic modeling. Biopolymers 53: 60–71.

    Article  CAS  Google Scholar 

  84. Skjâk-Bræk, G.; Grasdalen, H. and Smidsrod, O. (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr. Polymers 10: 31–54.

    Article  Google Scholar 

  85. Hills, B.P.; Godward, J.; Debatty, M.; Barras, L.; Saturio, C.P. and Ouwerx, C. (2000) NMR studies of calcium induced alginate gelation. Part II. The internal bead structure. Magn. Res. Chem. 38: 719–728.

    Article  CAS  Google Scholar 

  86. Strand, B.L.; Myrch, Y.A.; Espevik, T. and Skjâk-Bræk, G. (2003) Visualisation of alginatepolylysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol. Bioeng. (In press).

    Google Scholar 

  87. Skjâk-Bræk, G.; Smidsrod, O. and Larsen, B. (1986) Tailoring of alginates by enzymatic modification in vitro. Int. J. Biol. Macromol. 8: 330–336.

    Article  Google Scholar 

  88. Pealez, C. and Karel, M. (1981) Improved method for preparation of fruit-simulating alginate gels. J. Food Process. Preserv. 5: 63–81.

    Article  Google Scholar 

  89. Flink, J.M. and Johansen, A. (1985) A novel method for immobilizing yeast cells in alginates of various shapes by internal liberation of Ca-ions. Biotechnol. Lett. 7: 765–768.

    Article  CAS  Google Scholar 

  90. Draget, K.I.; ostgaard, K. and Smidsrod, O. (1990) Homogeneous alginate gels–a technical approach. Carbohydr. Polymers 14: 159–178.

    Article  CAS  Google Scholar 

  91. Strand, B.L.; Morch, Y.A.; Syvertsen, K.R.; Espevik, T. and Skjâk-Bræk, G. (2003) Microcapsules made by enzymatically tailored alginate. J. Biomed. Mater. Res. (In press).

    Google Scholar 

  92. Smidsrod, O.; Glover, R.M. and Whittington, S.G. (1973) The relative extension of alginates having different chemical composition. Carbohydr. Res. 27: 107–118.

    Google Scholar 

  93. Flory, P.J. (Ed.) (1953) Principles of polymer chemistry. Oxford University, Ithaca.

    Google Scholar 

  94. Tanaka, T. (1979) Phase transitions in gels and a single polymer. Polymer 20: 1404–1412.

    Article  CAS  Google Scholar 

  95. Moe, S.T.; Draget, K.I.; Skjâk-Bræk, G. and Smidsrod, O. (1995) Alginates. In: Stephen, A.M. (Ed.) Food polysaccharides and their applications. Marcel Decker Inc., New York, U.S.

    Google Scholar 

  96. Gâseryid, O.; Smidsrod, O. and Skjâk-Bræk, G. (1998) Microcapsules of alginate-chitosan-I: A quantitative study of the interaction between alginate and chitosan. Biomaterials 19: 1815–1825.

    Article  Google Scholar 

  97. Rha, C.K. (1984) Chitosan as biomaterial. In: Colwell, R.R.; Pariser, E.R. and Sinskey, A.J. (Eds.) Biotechnology in the marine sciences. Wiley, New York; pp. 177–189.

    Google Scholar 

  98. Calafiore, R.; Basta, G.; Falorni, A.; Picchio, M.L.; Gambelunghe, G.; Del Sindaco, P. and Brunetti, P. (1992) Fabrication of high performance microcapsules for pancreatic islet transplantation. Diabetes, Nutrition and Metabolism 5: 173–176.

    Google Scholar 

  99. Tanaka, H.; Kurosawa, H.; Kokufuta, E. and Veliky, I.A. (1984) Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quartenized poly(ethyleneimine). Biotechnology and Bioengineering 26: 1393–1394.

    Article  CAS  Google Scholar 

  100. Veliky, 1.A. and Williams, R.E. (1981) The production of ethanol by Saccharomyces cerevisiae immobilized in polycation stabililzed calcium alginate gels. Biotechnol. Lett. 3: 275–280.

    Article  Google Scholar 

  101. Dautzenberg, H.; Schuldt, U.; Grasnick, G.; Karle, P.; Müller, P.; Löhr, M.; Pelegrin, M.; Piechaczyk, M.; Rombs, K.V.; Günzburg, W.H.; Salmons, B. and Saller, R.M. (1999) Development of cellulose sulfatebeased polyelectrolyte complex microcapsules for medical applications. In: Hunkeler, D.; Prokop, A.; Cherrington, A.; Rajotte, R. and Sefton, M. (Eds.) Bioartificial organs II: Technology, medicine and materials. Ann. N.Y. Acad. Sci. 875: 46–63.

    Google Scholar 

  102. King, G.; Daugulis, A.; Faulkner, P. and Goosen, M. (1987) Alginate-polylysine microcapsules of controlled membrane molecular weight cutoff for mammalian cell culture engineering. Biotechnol. Progress 3: 231–240.

    Article  CAS  Google Scholar 

  103. Ma, X.J.; Vacek, 1. and Sun, A. (1994) Generation of alginate-poly-l-lysine-alginate (apa) biomicroscopies -the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22: 43–69.

    Article  CAS  Google Scholar 

  104. Goosen, M.F.A.; O’Shea, G.M.; Gharapetian, H.M.; Chou, S. and Sun, A.M. (1985) Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas. Biotechnol. Bioeng. 27: 146–150.

    Article  CAS  Google Scholar 

  105. Dupuy, B.; Arien, A. and Minnot, A.P. (1994) FT-IR of membranes made with alginate/polylysine complexes. Variations with the mannuronic or guluronic content of the polysaccharides. Artif. Cells Blood Substit. Immobil. Biotechnol. 22: 71–82.

    CAS  Google Scholar 

  106. Halle, J.P.; Bourassa, S.; Leblond, F.A.; Chevalier, S.; Beaudry, M.; Chapdelaine, A.; Cousineau, S.; Saintonge, J. and Yale, J.F. (1993) Protection of islets of langerhans from antibodies by microencapsulation with alginate-poly-l-lysine membranes. Transplantation 55: 350–354.

    Article  CAS  Google Scholar 

  107. Tai, I.T.; Vacek, 1. and Sun, A.M. (1995) The alginate-poly-L-lysine-alginate membrane: Evidence of a protective effect on microencapsulated islets of Langerhans following exposure to cytokines. Xenotransplantation 2: 37–45.

    Google Scholar 

  108. Bartkowiak, A. (2001) Optimal conditions of transplantable binary polyelectrolyte microcapsules. In: Hunkeler, D.; Cherrington, A.; Prokop, A. and Rajotte, R. (Eds.) Bioartificial Organs III: Tissue sourcing, Immunoisolation and clinical trials. Ann. N.Y. Acad. Sci. 944: 120–134.

    Google Scholar 

  109. Varum, K.M.; Ottoy, M. and Smidsrod, O. (1994) Water solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr. Polymers 25: 65–70.

    Article  CAS  Google Scholar 

  110. Rihova, B. (2000) Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 42: 65–80.

    CAS  Google Scholar 

  111. Gin, H.; Dupuy, B.; Bonnemaisonbourignon, D.; Bordenave, L.; Bareille, R.; Latapie, M.J.; Baquey, C.; Bezian, J.H. and Ducassou, D. (1990) Biocompatibility of polyacrylamide microcapsules implanted in peritoneal-cavity or spleen of the rat–effect on various inflammatory reactions invitro. Biomater. Artif. Cells Artif. Organs 18: 25–42.

    CAS  Google Scholar 

  112. Miller, K.M. and Anderson, J.M. (1988) Human monocyte macrophage activation and interleukin-1 generation by biomedical polymers. J. Biomed. Mater. Res. 22: 713–731.

    Article  CAS  Google Scholar 

  113. Skjakk-Bræk, G.; Murano, E. and Paoletti, S. (1989) Alginate as immobilization material. 2. Determination of polyphenol contaminants by fluorescence spectroscopy, and evaluation of methods for their removal. Biotechnol. Bioeng. 33: 90–94.

    Article  Google Scholar 

  114. De Vos, P.; De Haan, B.J.; Wolters, G.H.J.; Strubbe, J.H. and Van Schilfgaarde, R. (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40: 262–270.

    Article  Google Scholar 

  115. Zimmermann, U.; Klock, G.; Federlin, K.; Hannig, K.; Kowalski, M.; Bretzel, R.G.; Horcher, A.; Entenmann, H.; Sieber, U. and Zekorn, T. (1992) Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free-flow electrophoresis. Electrophoresis 13: 269–274.

    Article  CAS  Google Scholar 

  116. Otterlei, M.; ostgaard, K.; Skjâk-Bræk, G.; SmidsrOd, O.; Soon-Shiong, P. and Espevik, T. (1991) Induction of cytokine production from human monocytes stimulated with alginate. J. Immunother. 10: 286–291.

    Article  CAS  Google Scholar 

  117. Espevik, T.; Ottrerlei, M.; Skjâk-Bræk, G.; Ryan, L.; Wright, S.D. and Sundan, A. (1993) The involvment of CD14 in stimulation of cytokine production by uronic acid polymers. Eur. J. Immunol. 23: 255–261.

    Article  CAS  Google Scholar 

  118. Otterlei, M.; Sundan, A.; Skjâk-Bræk, G.; Ryan, L.; Smidsrod, O. and Espevik, T. (1993) Similar mechanisms of action of defined polysaccharides and lipopolysaccharides–characterization of binding and tumor-necrosis-factor-alpha induction. Infect. Immun. 61: 1917–1925.

    CAS  Google Scholar 

  119. Berntzen, G.; Flo, T.H.; Medvedev, A.; Kilaas, L.; Skjâk-Bræk, G.; Sundan, A. and Espevik, T. (1998) The tumor necrosis factor-inducing potency of lipopolysaccharide and uronic acid polymers is increased when they are covalently linked to particles. Clin. Diagn. Lab. Immunol. 5: 355–361.

    CAS  Google Scholar 

  120. Flo, T.H.; Ryna, L.; Latz, E.; Takeuchi, O.; Monks, B.G.; Lien, E.; Halaas, O.; Akira, S.; Skjâk-Bræk, G.; Golenbock, D.T. and Espevik, T. (2002) Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J. Biol. Chem. 277: 35489–35495.

    Article  CAS  Google Scholar 

  121. Halaas, O.; Olsen, W.M.; Veiby, O.P.; Lovhaug, D.; Skjâk-Bræk, G.; Vik, R. and Espevik, T. (1997) Mannuronan enhances survival of lethally irradiated mice and stimulates murine haematopoiesis in vitro. Scand. J. Immunol. 46: 358–365.

    Article  CAS  Google Scholar 

  122. Skaugerud, O.; Hagen, A.; Borgersen, B. and Dornish, M. (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol. Genet. Eng. Rev. 16: 23–40.

    Google Scholar 

  123. Kulseng, B.; Skjâk-Bræk, G.; Ryan, L.; Anderson, A.; King, A.; Faxvaag, A. and Espevik, T. (1999) Antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67: 978–984.

    Article  CAS  Google Scholar 

  124. Klöck, G.; Frank, H.; Houben, R.; Zekorn, T.; Horcher, A.; Siebers, U.; Wöhrle, M.; Federlin, K. and Zimmermann, U. (1994) Production of purified alginates suitable for use in immunoisolated transplantation. Appl. Microbiol. Biotechnol. 40: 638–643.

    Article  Google Scholar 

  125. Caneno-Gomez, B. and Duncan, R. (1997) Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. Pharmac. 148: 231–240.

    Article  Google Scholar 

  126. Strand, B.L.; Ryan, L.; In’t Veld, P.; Kulseng, B.; Rokstad, A.M.; Skjâk-Bræk, G. and Espevik, T. (2001) Poly-L-lysine induces fibrosis on alginate microcapsuels via the induction of cytokines. Cell Transplantation 10: 263–275.

    CAS  Google Scholar 

  127. De Vos, P.; De Haan, B.J. and Van Schilfgaarde, R. (1996) The effect of alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18 (3): 273–278.

    Article  Google Scholar 

  128. Vandenbossche, G.M.R.; Van Oostveld, P. and Remon, J.P. (1993) Host reactions against alginatepolylysine microcapsules containing living cells. J. Pharm. Pharmacol. 45: 121–125.

    Article  CAS  Google Scholar 

  129. Clayton, H.A.; London, N.J.M.; Colloby, P.S.; Bell, P.R.F. and James, R.F.L. (1991) The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsule. J. Microencapsul. 8: 221–233.

    Article  CAS  Google Scholar 

  130. Clayton, H.A.; London, N.J.M.; Bell, P.R.F. and James, R.F.L. (1992) The transplantation of encapsulated islets of Langerhans into the peritoneal cavity of the BiobBreeding rat. Transplantation 54: 558–559.

    Article  CAS  Google Scholar 

  131. Ekrami, H.M. and Sheng, W.-C. (1995) Carbamylation decreases the cytotoxicity but not the drug-carrier properties of polylysines. J. Drug Target 2: 469–475.

    Article  CAS  Google Scholar 

  132. Darquy, S.; Pueyo, M.E.; Capron, F. and Reach, G. (1994) Complement activation by alginatepolylysine microcapsules used for islet transplantation. Artif. Organs 18: 898–903.

    Article  CAS  Google Scholar 

  133. Pueyo, M.E.; Darquy, S.; Capron, F. and Reach, G. (1993) In vitro activation of human macrophages by alginate-polylysine microcapsules. J. Biomater. Sci. Polym. Ed. 5: 197–203.

    Google Scholar 

  134. Gâserod, O.; Sannes, A. and Skjâk-Bræk, G. (1999) Microcapsules of alginate-chitosan II. A study of a capsule stability and permeability. Biomaterials 20: 773–783.

    Article  Google Scholar 

  135. Gill, R.G. and Wolf, L. (1995) Immunobiology of cellular transplantation. Cell Transplant. 4: 361–370.

    Article  CAS  Google Scholar 

  136. de Vos, P.; Hamel, A.F. and Tatarkiewicz, K. (2002) Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 45: 159–173.

    Article  Google Scholar 

  137. King, A.; Strand, B.L.; Rokstad, A.M.; Kulseng, B.; Andersson, A.; Skjâlc-Bræk, G. and Sandler, S. (2003) Improvement of the biocompatibility of alginate/poly-L-lysine/alginate microcapsules by the use of epimerised alginate as coating. J. Biomed. Mater. Res. (In press).

    Google Scholar 

  138. Cole, D.R.; Waterfall, M.; McIntyre, M. and Baird, J.D. (1992) Microencapsulated islet grafts in the BB/E rat: a possible role for cytokines in graft failure. Diabetologia 35: 231–237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strand, B.L., Skjåk-Bræk, G., Gåserød, O. (2004). Microcapsule Formulation and Formation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics