Skip to main content

Polyelectrolyte Complexes for Microcapsule Formation

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Polyelectrolyte complexes are formed by reaction of oppositely charged polymers containing covalently bound either anionic (polyanions) or cationic (polycations) groups. They represent an attractive class of polymer-based materials finding an irreplaceable role in many areas of the everyday life used for preparation of membranes, (micro)capsules and various types of controlled release devices [1,2]. Polyelectrolyte complexes have been considered as a challenging scientific field overlapping the areas of (i) the general macromolecular chemistry, (ii) the specific features of polyelectrolytes, (iii) the aspects of hydrogels and physically crosslinked networks and, (iv) the membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dautzenberg, H.; Jaeger, W.; Kötz, J.; Philipp, B.; Seidel, Ch. and Stscherbina, D. (1994) Polyelectrolytes: Formation, characterization and application. Hanser Publishers, Munich, Vienna, New York, ISBN 3–44617127–4.

    Google Scholar 

  2. Park, J.K. and Chang, H.N. (2000) Microencapsulation of microbial cells. Biotechnol. Adv. 18: 303–319.

    Article  CAS  Google Scholar 

  3. Kötz, J.; Kosmella, S. and Beitz, T. (2001) Self-assembled polyelectrolyte systems. Prog. Polym. Sci. 26: 1199–1232.

    Article  Google Scholar 

  4. Decher, G. (1996) Layered nanoarchitectures via directed assembly of anionic and cationic molecules. In: Sauvage, J. P. and Hosseini, M. W. (Eds.) Comprehensive supramolecular chemistry. Vol. 9: Templating, self-assembly and self-organization. Pergamon Press, Oxford; pp. 507–528.

    Google Scholar 

  5. Karibyants, N. and Dautzenberg, H. (1998) Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi-soluble polyelectrolyte complexes. Langmuir 14: 4427–4434.

    Article  CAS  Google Scholar 

  6. Tsuchida, E. and Abe, K. (1986) Polyelectrolyte complexes. In: Wilson, A D and Prosser, H J (Eds.) Development in ionic polymers-2. Elsevier Applied Science Publishers, London and New York, Chapter 5; pp. 191–263.

    Google Scholar 

  7. Ross-Murphy, S.B. (1991) Physical gelation of synthetic and biological macromolecules. In: DeRossi, D.; Kajiwara, K.; Osada, Y. and Yamauchi A. (Eds.) Polymer gels: fundamentals and biomedical applications, Plenum Press New York and London, ISBN 0–306–43805–4; pp. 21–39.

    Chapter  Google Scholar 

  8. Hoffman, A.S. (2001) Hydrogels for biomedical applications. Adv. Drug. Deliv. Rev. 54: 3–12.

    Article  Google Scholar 

  9. de Vos, P.; Hamel, A.F. and Tatarkiewicz, K. (2002) Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 45: 159–173.

    Article  Google Scholar 

  10. Hunkeler, D.; Prokop, A.; Powers, A.; Haralson, M.; DiMari, S. and Wang, T. (1997) A screening of polymers as biomaterials for cell encapsulation. Polym. News 22: 232–240.

    CAS  Google Scholar 

  11. Hou, Q.P. and Bae, Y.H. (1999) Biohybrid artificial pancreas based on macrocapsule device. Adv. Drug Deliv. Rev. 35: 271–287.

    CAS  Google Scholar 

  12. Zimmermann, U.; Mimietz, S.; Zimmermann, H.; Hillgärtner, M.; Schneider, H.; Ludwig, J.; Hasse, C.; Haase, A.; Rothmund, M. and Fuhr, G. (2000) Hydrogel-based non-autologous cell and tissue therapy. BioTechniques 29: 564–581.

    CAS  Google Scholar 

  13. Gombotz, W.R. and Wee, S.F. (1998) Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267–285.

    CAS  Google Scholar 

  14. Lim, F. and Sun, A.M. (1980) Microencapsulated islets as bioartificial pancreas. Science 210: 908–910.

    Article  CAS  Google Scholar 

  15. Soon-Shiong, P.; Heintz, R.E.; Merideth, N.; Yao, Q.X.; Yao, Z.; Zheng, T.; Murphy, M.; Moloney, M.K.; Schmehl, M.; Harris, M.; Mendez, R. and Sandford, P.A. (1994) Insulin independence in a type I diabetic patient after encapsulated islets transplantation. Lancet 343: 950–951.

    Article  CAS  Google Scholar 

  16. Thu, B.; Bruheim, P.; Espevik, T.; Smidsrßd, O.; Soon-Shiong, P. and Skjâlc-Bræk, G. (1996) Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials 17: 1031–1040.

    Article  CAS  Google Scholar 

  17. Thu, B.; Bruheim, P.; Espevik, T.; SmidsrOd, O.; Soon-Shiong, P. and Skjâkk-Bræk, G. (1996) Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials 17: 1069–1079.

    Article  CAS  Google Scholar 

  18. Soon-Shiong, P.; Heintz, R.E. and Skjâkk-Bræk, G. (1998) Microencapsulation of cells. US Patent 5, 762–959.

    Google Scholar 

  19. Soon-Shiong, P.; Desai, N.P. and Heintz, R.E. (1998) Method for making cytoprotective, biocompatible, retrievable microcapsule containment system. US Patent 5, 788–988.

    Google Scholar 

  20. Soon-Shiong, P.; Desai, N.P. and Heintz, R.E. (1999) Method of treating patients with diabetes. US Patent 5, 879–709.

    Google Scholar 

  21. Hallé, J.-P.; Leblond, F.A.; Pariseau, J.-F.; Jutras, P.; Brabant, M.J. and Lepage, Y. (1994) Studies on small (=300 gm) microcapsules: II. Parameters governing the production of alginate bead by high voltage electrostatic pulses. Cell Transplant. 3: 365–372.

    Google Scholar 

  22. Leblond, F.A.; Tessier, J. and Hallé, J.-P. (1996) Quantitative method for the evaluation of biomicrocapsule resistance to mechanical stress. Biomaterials 17: 2097–2102.

    Article  CAS  Google Scholar 

  23. Robitaille, R.; Pariseau, J.-F.; Leblond, F.A.; Lamoureux, M.; Lepage, Y. and Hallé, J.-P. (1999) Studies on small (350 gm) alginate-poly-L-Lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J. Biomed. Mater. Res. 44: 116–120.

    Article  CAS  Google Scholar 

  24. Leblond, F.A.; Simard, G.; Henley, N.; Rocheleau, B.; Huet, P.-M. and Hallé, J.-P. (1999) Studies of smaller (-315 gm) microcapsules: IV. Feasibility and safety of intrahepatic implantations of small alginate poly-L-Lysine microcapsules. Cell Transplant. 8: 327–337.

    CAS  Google Scholar 

  25. Strand, B.L.; Ryan, L.; In’t Velt, P.; Kulseng, B.; Rokstad, A.M.; Skjâk-Bræk, G. and Espevik, T. (2001) Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant. 10: 263–275.

    CAS  Google Scholar 

  26. Peirone, M.; Ross, C.J.D.; Hortelano, G.; Brash, J.L. and Chang, P. (1998) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. Biomaterials 42: 587–596.

    CAS  Google Scholar 

  27. Calafiore, R.; Basta, G.; Osticioli, L.; Luca, G.T.; Tortoioli, C. and Brunetti, P. (1995) Coherent microcapsules for pancreatic islet transplantation: a new potential approach for bioartificial pancreas. Transplant. Proc. 28: 822–823.

    Google Scholar 

  28. Calafiore, R.; Basta, G.; Luca, G.; Boselli, C.; Bufalari, A.; Giustozzi, G.M.; Gialletti, R.; Moriconi, F. and Brunetti, P. (1998) Transplantation of allogeneic/xenogeneic pancreatic islets containing coherent microcapsules in adult pigs. Transplant. Proc. 30: 482–483.

    Article  CAS  Google Scholar 

  29. Calafiore, R.; Basta, G.; Luca, G.; Boselli, C.; Bufalari, A.; Bufalari, A.; Cassarani, M.P.; Giustozzi, G.M. and Brunetti, P. (1999) Transplantation of minimal volume microcapsules in diabetic high mammalians. Ann. NY Acad. Sci. 875: 219–232.

    Article  CAS  Google Scholar 

  30. Anonymous, www.diatranz.co.nz

    Google Scholar 

  31. Sakai, S.; Ono, T.; Ijima, H. and Kawakami, K. (2001) Synthesis and transport characterisation of alginate/aminopropyl-silicate/alginate microcapsule: application to bioartificial pancreas. Biomaterials 22: 2827–2834.

    Article  CAS  Google Scholar 

  32. Schneider, S.; Feilen, P.J.; Slotty, V.; Kampfner, D.; Preuss, S.; Berger, S.; Beyer, J. and Pommersheim, R. (2001) Multilayer capsules: a promising microencapsulation system for transplantation of pancreatic islets. Biomaterials 22: 1961–1970.

    Article  CAS  Google Scholar 

  33. Yang, J.; Goto, M.; Ise, H.; Cho, C.-S. and Akaike, T. (2002) Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials 23: 471–479.

    Article  CAS  Google Scholar 

  34. Duvivier-Kali, V.F.; Orner, A.; Parent, R.J.; O’Neil, J.J. and Weir, G.C. (2001) Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 50: 1698–1705.

    Article  CAS  Google Scholar 

  35. Mirghani, A; ldkaidek, N.M.; Salem, M.S. and Najib, N.M. (2000) Formulation and release behaviour of diclofenac sodium in Compritol 888 matrix beads encapsulated in alginate. Drug Dev. Ind. Pharm. 26: 791–795.

    Article  CAS  Google Scholar 

  36. Iskakov, R.M.; Kikuchi, A. and Okano, T. (2002) Time-programmed pulsative release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers. J. Control. Release 80: 57–68.

    Article  CAS  Google Scholar 

  37. Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P. and Kailasapathy, K. (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food. Microbiol. 62: 47–55.

    Article  CAS  Google Scholar 

  38. Chan, L.W. and Heng, P.W.S. (1998) Effects of poly(vinylpyrrolidone) and ethylcellulose on alginate microspheres prepared by emulsification. J. Microencapsulation 15: 409–420.

    Article  CAS  Google Scholar 

  39. Gürsoy, A.; Karakus, D. and Okar, 1. (1999) Polymers for sustained release formulations of dipyridamolalginate microspheres and tabletted microspheres. J. Microencapsulation 16: 439–452.

    Article  Google Scholar 

  40. Fernandez-Pérez, M.; Gonzalez-Pradas, E.; Villafranca-Sanchez, M. and Flores-Céspedes (2000) Mobility of isoproturon from an alginate-bentonite controlled release formulation in layered soil. Chemosphere 41: 1495–1501.

    Article  Google Scholar 

  41. Wang, T.G.; Lacik, I.; Brissovâ, M.; Anilkumar, A.V.; Prokop, A.; Hunkeler, D.; Green, R.; Shahrokhi, K. and Powers, A.C. (1997) An encapsulation system for the immunoizolation of pancreatic islets. Nature Biotechnol. 15: 358–362.

    Article  CAS  Google Scholar 

  42. Lactk, 1.; Brissovâ, M.; Anilkumar, A.V.; Powers, A.C. and Wang, T.G. (1998) New capsule with tailored properties for the encapsulation of living cells. J. Biomed. Mater. Res. 39: 52–60.

    Article  Google Scholar 

  43. Brissovâ, M.; Lacik, 1.; Anilkumar, A.V.; Powers, A.C. and Wang, T.G. (1998) Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39: 61–70.

    Google Scholar 

  44. Brissovâ, M.; Petro, M.; Lactk, 1.; Powers, A.C. and Wang, T.G. (1996) Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal. Biochem. 242: 104–111.

    Google Scholar 

  45. Xu, K.; Hercules, D.; Lactk, 1. and Wang, T.G. (1998) Atomic force microscopy used for the surface characterization of microcapsule immunoisolation devices. J. Biomed. Mater. Res. 41: 461–467.

    CAS  Google Scholar 

  46. LacIk, 1.; Anilkumar, A.V. and Wang, T.G. (2001) A two-step process for controlling the surface smoothness of polyelectrolyte-based microcapsule. J. Microencapsulation 18: 479–490.

    Article  Google Scholar 

  47. Anilkumar, A.V.; Lacik, 1. and Wang, T.G. (2001) A novel reactor for making uniform capsules. Biotechnol. Bioeng. 75: 581–589.

    Article  CAS  Google Scholar 

  48. Wang T.G. (2002) Microencapsulation methods: PMCG capsules. In: Atala, A. and Lanza, R. (Eds.) Methods of Tissue Engineering. Academic Press, Vol. 75; pp. 841–857.

    Google Scholar 

  49. Bartkowiak, A.; Canaple, L.; Ceuasoglu, I.; Nurdin, N.; Renken, A.; Rindisbacher, L.; Wandrey, Ch.; Desvergne, B. and Hunkeler, D. (1999) New multicomponent capsule for immunoisolation. Ann. NY Acad. Sci. 875: 135–145.

    Article  CAS  Google Scholar 

  50. Nurdin, N.; Canaple, L.; Bartkowiak, A.; Desvergne, B. and Hunkeler, D. (2000) Capsule permeability via polymer and protein ingress/egress. J. Appl. Polym. Sci. 75: 1165–1175.

    Article  CAS  Google Scholar 

  51. Canaple, L.; Nurdin, N.; Angelova, N.; Saugy, D.; Hunkeler, D. and Desvergne, B. (2001) Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules — in vitro cryopreservation studies. J. Hepatology 34: 11–18.

    Article  CAS  Google Scholar 

  52. Grigorescu, G.; Rehor, A. and Hunkeler, D. (2002) Polyvinylamine hydrochloride-based microcapsules: polymer synthesis, permeability and mechanical properties. J. Microencapsulation 19: 245–259.

    Article  CAS  Google Scholar 

  53. Quong, D. and Neufeld, R.J. (1999) DNA encapsulated within co-guanidine membrane coated alginate beads and protection from extracapsular nuclease. J. Microencapsulation 16: 573–585.

    Article  CAS  Google Scholar 

  54. Hearn, E. and Neufeld, R.J. (2000) Poly(methylene-co-guanidine) coated alginate as an encapsulation matrix for urease. Process Biochem. 35: 1253–1260.

    Article  CAS  Google Scholar 

  55. Gåserød, O.; Jolliffe, I.G.; Hampson, F.C.; Dettmar P.W. and Skjakk-Bræk, G. (1998) The enhancement of the bioadhesive properties of calcium alginate beads by coating with chitosan. Int. J. Pharm. 175: 237–246.

    Article  Google Scholar 

  56. Skjakk-Bræk, G.; Grasdalen, H. and Smidsrod, O. (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr. Polym. 10: 31–54.

    Article  Google Scholar 

  57. Gåserød, O.; Smidsrßd O. and Skjük-Bræk, G. (1998) Microcapsules of alginate-chitosan. 1. A quantitative study of the interaction between alginate and chitosan. Biomaterials 19: 1815–1825.

    Article  Google Scholar 

  58. Gåserød, O.; Sannes, A. and Skjak-Bræk, G. (1999) Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials 20: 773–783.

    Article  Google Scholar 

  59. Bartkowiak, A. and Hunkeler, D. (1999) Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions. Chem. Mater. 11: 2486–2492.

    Article  CAS  Google Scholar 

  60. Bartkowiak, A. and Hunkeler, D. (2000) Alginate-oligochitosan microcapsules: Il. Control of mechanical resistance and permeability of the membrane. Chem. Mater. 12: 206–212.

    Article  CAS  Google Scholar 

  61. Angelova, N. and Hunkeler, D. (2001) Stability assessment of chitosan-sodium hexametaphosphate capsules. J. Biomater. Sci. Polym. Edn. 12: 1207–1225.

    Article  CAS  Google Scholar 

  62. Angelova, N. and Hunkeler, D. (2001) Effect of preparation conditions on properties and permeability of chitosan-sodium hexametaphosphate capsules. J. Biomater Sci. Polym. Edn. 12: 1317–1337.

    Google Scholar 

  63. Aral, C. and Akbuga, J. (1998) Alternative approach to the preparation of chitosan beads. Int. J. Pharm. 168: 9–15.

    Article  CAS  Google Scholar 

  64. Mi, F.L.; Sung, H.W. and Shyu, S.S. (2002) Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr. Polym. 48: 61–72.

    Article  CAS  Google Scholar 

  65. Mares-Guia, M. and Ricordi, C. (2001) Hetero-polysaccharide conjugate and methods of making and using the same. US Patent 6, 281, 341

    Google Scholar 

  66. Maria-Engler, S.S.; Mares-Guia, M.; Correa, M.L.C.; Oliveira, E.M.C.; Aita, C.A.M.; Krogh, K.; Genzini, T.; Miranda, M.P.; Ribeiro, M.; Vilela, L.; Noronha, I.L.; Eliaschewitz, F.G. and Sogayar, M.C. (2001) Microencapsulation and tissue engineering as an alternative treatment of diabetes. Braz. J. Med. Biol. Res. 34: 691–697.

    Article  CAS  Google Scholar 

  67. Desmangles, A.-I.; Jordan, O. and Marquis-Weible, F. (2001) Interfacial photopolymerization of 13–cell clusters: approaches to reduce coating thickness using ionic and lipophilic dyes. Biotechnol. Bioeng. 72: 634–641.

    Article  CAS  Google Scholar 

  68. Dautzenberg, H.; Loth, F.; Fechner, K.; Mehlis, B. and Pommerening, K. (1985) Preparation and performance of symplex capsules. Makromol. Chem. Suppl. 9: 203–210.

    Article  CAS  Google Scholar 

  69. Pelegrin, M.; Marin, M.; Noël, D.; Del Rio, M.; Sailer, R.; Stange, J.; Mitzner, S.; Günzburg, W.H. and Pechaczyk, M. (1998) Systemic long-term delivery of antibodies in immunocompetent animals using cellulose sulphate containing antibody-producing cells. Gene Ther. 5: 828–834.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lacík, I. (2004). Polyelectrolyte Complexes for Microcapsule Formation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics