Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

The encapsulation of mammalian cells has been a topic of intensive research, if not since Chang’s pioneering work [1], certainly after Sun showed long-term normoglycaemia in diabetic rats [2] by immunoisolating xenotransplanted islets in a semipermeable polymeric membrane. Therefore, since the early 1980s, two dozen academic groups and approximately the same number of, generally venture capital funded, private firms, have attempted to move the field into larger animal trials, and the clinic, all the while with the ambition of increasing the period of transplanted cell function. However, despite the field’s potential, and the outstanding groups working therein, progress has been very slow. This can be explained, to a large extent, by the inability to consistently isolate, and disseminate, technologies for cell isolation. Primary cell lines are also lacking for the great majority of hormone deficient diseases, which would require such a therapy. Concomitant with the lack of tissue supply is the inability of all but the most selective groups, to be able to cryopreserve or “bank” cell lines, limiting the number of pre-clinical trials. A final difficulty has been the lack of any batches of biocompatible materials, even for the relatively simply alginate bead-based capsules. The longstanding goal of having firms, or laboratories, provide clinically pre-certified lots, therefore, seems unrealizable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, T.M.S. (1964) Semipermeable microcapsules. Science 146: 524–525.

    Article  CAS  Google Scholar 

  2. Lim, F. and Sun, A.M. (1980), Microencapsulated iselts as bioartificial pancreas. Science 210: 908–910.

    Article  CAS  Google Scholar 

  3. Strand, B.L.; March, Y.A.; Rokstad, A.M.; Kulseng, B.; Espevik, T. and Skjâk-Bræk, G. (2001) Improved capsule properties by the use of epimerised alginate. In: Proceedings of the IX International BRG workshop, Warsaw, 11–13 May 2001; S.I-1 (copies available at bioenc@ibib.waw.pl).

    Google Scholar 

  4. Gaserod, O. (1998) Microcapsules of alginate-chitosan: A study of capsule formation and functional properties. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.

    Google Scholar 

  5. Ma, X.; Vacek, I. and Sun, A. (1994) Generation of alginate-polylysine-alginate (APA) biomicrocapsules: The relationship between the membrane strength and the reaction conditions. Art. Cells, Blood Subst., and Biotechn. 22: 43–69.

    Article  CAS  Google Scholar 

  6. Renken, A. (2000) Formation of microcapsules by reaction of polyanion blends with divalent cations and oligocations. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.

    Google Scholar 

  7. Gugerli, R. (2003) Polyelectrolyte-complex and covalent-complex microcapsules for encapsulation of mammalian cells: potential and limitations. Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.

    Google Scholar 

  8. Thu, B.; Bruheim, P.; Espevik, T.; Smidsrod, O.; Soon-Shiong, P. and Skjâk-Bræk, G. (1996) Alginate polycation microcapsules: 1. Interaction between alginate and polycation. Biomaterials 17: 1031–1040.

    Article  CAS  Google Scholar 

  9. Poncelet, D. and Neufeld, RT. (1989) Shear breakage of nylon membrane microcapsules in a turbine reactor. Biotechnol. Bioeng. 33: 95–103.

    Article  CAS  Google Scholar 

  10. dos Santos, V.; Leenen, E. and Rippoll, M. (1997) Relevance of rheological properties of gel beads for their mechanical stability in bioreactors. Biotechnol. Bioeng. 56: 517–529.

    Article  Google Scholar 

  11. Lu, G.Z.; Thompson, F.G. and Gray, M.R. (1992) Physical modeling of animal cell damage by hydrodynamic forces in suspension cultures. Biotechnol. Bioeng. 40: 1277–1281.

    Article  CAS  Google Scholar 

  12. Chen, J. and Park, S. (1995) Polysaccharide hydrogels for protein drug delivery. Carbohydrate Polym. 28: 69–76.

    Article  CAS  Google Scholar 

  13. Uludag, H.; De Vos, P. and Tresco, P. (2000) Technology of mammalian cell encapsulation. Adv. Drug Delivery Rev. 42: 29–64.

    Article  CAS  Google Scholar 

  14. Wang, J. (2000) Development of new polycations for cell encapsulation with alginate. Mater. Sci. Eng. C: 59–63.

    Google Scholar 

  15. Peirone, M.; Ross, C.; Hortelano, G. and Brash, J. (1998) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J. Biomed. Mater. Res. 42: 587–596.

    Article  CAS  Google Scholar 

  16. Martinsen, A.; Skjâk-Bræk, G. and Smidsrßd, O. (1989) Alginate as immobilization material: 1. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33: 79–89.

    Article  CAS  Google Scholar 

  17. Schoichet, M.; Li, R.; White, M. and Winn, S. (1995) Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose. Biotechnol. Bioeng. 50: 374–381.

    Article  Google Scholar 

  18. Zhang, Z.; Saunders, R. and Thomas, C.R. (1999) Mechanical strength of single microcapsules determined by a novel micromanipulation technique. J. Microencapsulation 16: 117–124.

    Article  CAS  Google Scholar 

  19. Rehor, A.; Canaple, L.; Zhang, Z. and Hunkeler, D. (2001) The compression deformation of multicomponent microcapsules: Influence of size, membrane thickness and compression speed. J. Biomater. Sci., Polym. Ed. 12: 157–170.

    Google Scholar 

  20. Wandrey, C.; Espinosa, D.; Rehor, A. and Hunkeler, D. (2002) Influence of alginate characteristics on the properties of multi-component microcapsules. J. Microencapsulation. In press.

    Google Scholar 

  21. Andrei, D.; Briscoe, B.J. and Williams, D.R. (1996) The deformation of microscopic gel particles. J Chim. Phys. 93: 960–976.

    CAS  Google Scholar 

  22. Liu, K.K.; Williams, D.R. and Briscoe, B.J. (1996) Compressive deformation of a single microcapsule. Phys. Rev. 54: 6673–6680.

    CAS  Google Scholar 

  23. Ohtsubo, T.; Tsuda, S. and Tsuji, K (1990) A study of the physical strength of microcapsules. Polymer 32: 2395–2399.

    Article  Google Scholar 

  24. Prokop, A.; Hunkeler, D.; Haralson, M.; Dimari, S. and Wang. T.G. (1998) Water soluble polymers for immunoisolation I: Complex coacervation and cytotoxicity. Adv. Polym. Sci. 136: 1–54.

    Article  CAS  Google Scholar 

  25. Wandrey, C.; Bartkowiak, A. and Hunkeler, D. (2000) Development of biomembranes by utilizing analytical ultracentrifugation techniques. In: Transact. 6m World Biomat. Congr. Vol II; p. 893.

    Google Scholar 

  26. Wandrey, C. (2000) Study of polyelectrolyte complex formation by analytical ultracentrifugation. Polym. News 25: 299–301.

    CAS  Google Scholar 

  27. Wandrey, C. and Bartkowiak, A. (2001) Membrane formation at interfaces examined by analytical ultracentrifugation techniques. Colloids Surf. A 180: 141–153.

    Article  CAS  Google Scholar 

  28. Wandrey, C.; Grigorescu, G. and Hunkeler, D. (2002) Study of polyelectrolyte complex formation applying the synthetic boundary technique of analytical ultracentrifugation. Progr. Colloid Polym. Sci 119: 84–91.

    CAS  Google Scholar 

  29. Sakai, S.; Ono, T.; Ijima, H. and Kawakami, K. (2001) Newly developed aminopropyl-silicate immunoisolation membrane for a microcapsule-shaped bioartificial pancreas. In: Hunkeler, D.; Cherrington, A.; Prokop, A. and Rajotte, R. (Eds.) Bioartifical Organs: Tissue Sourcing, Immunoisolation and Clinical Trials. Annals of the NY Academy of Sciences, Vol. 944; pp. 278–283.

    Google Scholar 

  30. Rosinski, S.; Grigorescu, G.; Lewinska, D.; Ritzen, LG.; Viernstein, H.; Tenou, E.; Poncelet, D.; Zhang, Z.; Fan, X.; Serp, D.; Marison, I. and Hunkeler, D. (2002) Characterization of microcapsules: recommended methods based on round-robin testing. J. Microencapsulation 19: 641–659.

    Article  CAS  Google Scholar 

  31. Schuldt, U. and Hunkeler, D. (2000) Characterization methods for microcapsules. Minerva Biotec. 12: 249–264.

    Google Scholar 

  32. Jang, L.K. (1994) Diffusivity of Cue’ in calcium alginate gel beads. Biotechnol. Bioeng. 43: 183–185.

    Article  CAS  Google Scholar 

  33. Kwiatkowska, S. and Wojcik, M. (2000) Diffusion of copper (II) chloride in concentrate alginate gel. In: Proceedings of COST 840 Workshop “Structure-function properties of biopolymers in relation with bioencapsulation”, December 8–10 2000, Espoo, Finland; pp. 1–4.

    Google Scholar 

  34. Tanaka, H.; Matsumara, M. and Veliky, I.A. (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol. Bioeng. 26: 53–58.

    Article  CAS  Google Scholar 

  35. Powers, A.C.; Brissova, M.; Lacik, 1.; Anilkumar, A.V.; Shahrokhi, K. and Wang, T.G. (1997) Permeability assessment of capsules for islet transplantation. In: Prokop, A.; Hunkeler, D. and Cherrington, A.D. (Eds.) Bioartifical Organs: Science, Medicine and Technology Annals of the NY Academy of Sciences, Vol. 931; pp. 208–217.

    Google Scholar 

  36. Lewinska, D.; Rosinski, S.; Hunkeler, D.; Poncelet, D. and Werynski, A. (2002) Mass transfer coefficient in characterization of gel beads and microcapsules. J. Membrane Sci. 209: 533–540.

    Article  CAS  Google Scholar 

  37. Crank, J. (1975) The Mathematics of Diffusion. Clarendon Press, Oxford.

    Google Scholar 

  38. Mikkelsen, A. and Elgsæther, A. (1995) Density distribution of calcium induced alginate gels. Biopolymers 36: 17–41.

    Article  CAS  Google Scholar 

  39. Rosinski, S. and Lewinska, D. (2002) Mass transfer coefficient and diffusion coefficient in characterisation of microcapsules for bioencapsulation. In: Proceedings of COST 840 Workshop “Formulation and Characterisation of Biocompatible Capsules”, 30 August-1 September 2002, University of Birmingham, UK; T13, pp. 1-–4.

    Google Scholar 

  40. Peppas, N.A. and Wright, S. (1996) Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. Macromolecules 29: 8798–8804.

    Article  CAS  Google Scholar 

  41. Wojcik, M. (1991) The methods of determination of the effective diffusion coefficient in biocatalyser carriers (in Polish). Biotechnologia 2: 20–27.

    Google Scholar 

  42. Radcliffe, D.F. and Gaylor, J.D.S. (1981) Sorption kinetics in haemoperfusion columns. Part I: Estimation of mass transfer parameters. Med. and Biol. Eng. Comp. 19>: 617–627.

    Article  CAS  Google Scholar 

  43. Martinsen, A.; Skjak-Bræk, G. and Smisrod, O. (1989) Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate beads. Biotechnol. Bioeng. 39: 186–194.

    Article  Google Scholar 

  44. Martinsen, A.; Stodrß, 1. and Skjâk-Bræk, G. (1992) Alginate as immobilization material: III. Diffusional properties. Biotechnol. Bioeng. 39: 186–194.

    CAS  Google Scholar 

  45. Thu, B.; Bruheim, P.; Espevik, T.; Smisrod, O.; Soon-Shiong, P. and Skjakk-Bræk, G. (1996) Alginate polycation microcapsules: 11. Some functional properties. Biomaterials 17: 1069–1079.

    Article  CAS  Google Scholar 

  46. Skjakk-Bræk, G.; Smisrod, O. and Grasdalen, H. (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr. Polym. 10: 31–54.

    Article  Google Scholar 

  47. Poncelet, D. (2001) Production of alginate beads by emulsification/internal gelation. In: Hunkeler, D.; Cherrington, A.; Prokop, A. and Rajotte, R. (Eds.) Bioartifical Organs: Tissue Sourcing, Immunoisolation and Clinical Trials. Annals of the NY Academy of Sciences, Vol. 944; pp. 74–82.

    Google Scholar 

  48. Strand, B.L.; Mßrch, Y.A.; Espevik, T. and Skjäk-Bræk, G. (2003) Visualization of alginate-poly-Llysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol. Bioeng. (in press).

    Google Scholar 

  49. Brissova, M.; Petro, M.; Lacik, I.; Powers, A. and Wang, T. (1996) Evaluation of microcapsule permeability via inverse size exclusion. Analytical Biochemistry 242: 104–111.

    Article  CAS  Google Scholar 

  50. Awrey, D.E.; Tse, M.; Hortelano, G. and Chang, P.L. (1996) Permeability of alginate microcapsules to secretory recombinant gene products. Biotechnol. Bioeng. 52: 472–484.

    Article  CAS  Google Scholar 

  51. Sun, A.M. (1997) Microencapsulation of cells. In: Prokop, A.; Hunkeler, D. and Cherrington, A.D. (Eds.) Bioartifical Organs: Science, Medicine and Technology. Annals of the NY Academy of Sciences, Vol. 931; pp. 271–279.

    Google Scholar 

  52. Goosen, M.F.A.; O’Shea, G.M.; Gharapetian, H.M.; Chou, S. and Sun, A.M. (1984) Optimization of microencapsulation parameters. Semipermeable microcapsules as a bioartificial pancreas. Biotechnol. Bioeng. 27: 146–150.

    Article  Google Scholar 

  53. Lee, C.-S. and Chu, 1.-M. (1997) Characterization of modified alginate-poly-L-lysine microcapsules. Artif. Organs 21: 1002–1006.

    Article  CAS  Google Scholar 

  54. Strand, B.L.; Rayn, L.; In’t Veld, P.; Kulseng, B.; Rokstad, A.M.; Skjåk-Bræk, G. and Espevik, T. (2001) Poly-L-lysine induced fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant. 10: 263–275.

    CAS  Google Scholar 

  55. Wang, T.G.; Lacik, 1.; Brissova, M.; Prokop, A.; Hunkeler, D.; Anilkumar, A.V.; Green, R.; Shahrokhi, K. and Powers, A.C. (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnol. 15: 358–362.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hunkeler, D., Wandrey, C., Rosinski, S., Lewinska, D., Werynski, A. (2004). Characterization of Microcapsules. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics