Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Alginates, which are natural occurring marine polymers, have been used for several decades in the food and pharmaceutical industries as emulsifying, thickening, film forming and gelling agents [1]. Within the biomedical field alginates are now also well known as immobilisation materials for cells, tissue or macromolecules. Immobilisation (entrapment) in insoluble alginate gel is recognized as a rapid, non-toxic and versatile method for macromolecules and cells. The replacement of cell products lost due to defects by immobilised enzymes and cells was first suggested by Chang [2] in 1964 and this potential has become more and more actualised through increased knowledge about diseases that are caused by the inability of the body to produce critical molecules such as growth factors, hormones or enzymes. Therefore, alginates are now widely used as immobilising materials for cells or tissue in the development of artificial organs and with the potential to be used in treatment of a variety of diseases, including Parkinson’s disease, chronic pain, liver failure and hypocalcaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Onsoyen, E. (1996) Commercial applications of alginates. Carbohydrates in Europe 14: 26–31.

    Google Scholar 

  2. Chang, T.M.S. (1964) Semipermeable microcapsules. Science 146: 524–525.

    Article  CAS  Google Scholar 

  3. Lanza, R.P.; Kuhtreiber, W.M.; Ecker, D.; Staruk, J.E. and Chick, W.L. (1995) Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59: 1377–1384.

    Article  CAS  Google Scholar 

  4. Bugarski, B.; Sajc, L.; Playsic, M.; Goosen, M. and Jovanovic, G. (1997) Semipermeable alginate-PLO microcapsules as a bioartificial pancreas. In: Funatsu, K. (Ed.) Animal Cell Technology. Kluwer Academic Publishers; pp. 479–486.

    Google Scholar 

  5. Park, Y.G.; Iwata, H. and Ikada, Y. (1998) Microencapsulation of islets and model beads with a thin alginate-Ba2+ gel layer using centrifugation. Polymers for Adv. Technol. 9: 734–739.

    Google Scholar 

  6. de Vos, P.; De Haan, B.; Wolters, G.H.J. and van Schilfgaarde, R. (1996) Factors influencing the adequacy of microencapsulation of rat pancreatic islets. Transplantation 62: 888–893.

    Article  Google Scholar 

  7. Weber, C.J.; Hagler, M. and Konieczny, B. (1995) Encapsulated islet iso-, allo-, and xenografts in diabetic NOD mice. Transplant. Proc. 27: 3308–3311.

    Google Scholar 

  8. Brissová, M.; Lactk, 1.; Powers, A.C.; Anilkumar, A.V. and Wang, T. (1998) Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res. 39: 61–70.

    Google Scholar 

  9. Orlowski, T.; Sitarek, E.; Tatarkiewicz, K.; Sabat, M. and Antosiak, M. (1997) Comparison of two methods of pancreas islets immunoisolation. Int. J. Artif. Organs 20: 701–703.

    Google Scholar 

  10. Tze, W.J.; Cheung, S.C.; Tai, J. and Ye, H. (1998) Assessment of the in vivo function of pig islets encapsulated in uncoated alginate microspheres. Transplant. Proc. 30: 477–478.

    Google Scholar 

  11. Sandler, S.; Andersson, A.; Eizirik, D.L.; Hellerstrom, C.; Espevik, T.; Kulseng, B.; Thu, B.; Pipeleers, B. and Skjäk-Bræk, G. (1997) Assessment of insulin secretion in vitro from microencapsulated fetal porcine islet-like cell clusters and rat, mouse, and human pancreatic islets. Transplantation 63: 1712–1718.

    Article  CAS  Google Scholar 

  12. Wang, T.; Lacik, 1.; Brissovâ, M.; Anilkumar, A.V.; Prokop, A.; Hunkeler, D.; Green, R.; Shahrokhi, K. and Powers,A.C. (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15: 358–362.

    Google Scholar 

  13. Storrs, R.; Dorian, R.; King, S.R.; Lakey, J. and Rilo, H. (2001) Preclinical development of the Islet Sheet. Ann. N.Y. Acad. Sci. 944: 252–266.

    Google Scholar 

  14. Hortelano, G.; al-Hendy, A.; Ofosu, F.A. and Chang, P.L. (1996) Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 87: 5095–5103.

    CAS  Google Scholar 

  15. Hortelano, G. and Stockley, T. (1999) Implantable Microcapsules for Gene Therapy for Hemophilia. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston; pp. 3–17.

    Google Scholar 

  16. Peirone, M.A.; Delaney, K.; Kwiecin, J.; Fletch, A. and Chang, P.L. (1998) Delivery of Recombinant Gene Product to Canines with Nonautologous Microencapsulated Cells. Hum. Gene Ther. 9: 195–206.

    Google Scholar 

  17. al-Hendy, A.; Hortelano, G.; Tannenbaum, G.S. and Chang,P.L. (1996) Growth retardation-an unexpected outcome from growth hormone gene therapy in normal mice with microencapsulated myoblasts. Hum. Gene Ther. 7: 61–70.

    Google Scholar 

  18. Chang, P.L.; Shen, N. and Westcott, A.J. (1993) Delivery of recombinant gene products with microencapsulated cells in in vivo. Hum. Gene Ther. 4: 433–440.

    Google Scholar 

  19. Chang, P.L.; Hortelano, G.; Tse, M. and Awrey, D.E. (1994) Growth of recombinant fibroblasts in alginate microcapsules. Biotechnol. Bioeng. 43: 925–933.

    Google Scholar 

  20. Chang, T.M.S. and Prakash, S. (1998) Therapeutic uses of microencapsulated genetically engineered cells. Molecular Medicine Today 5: 221–227.

    Article  Google Scholar 

  21. Chang, T.M. and Malave, N. (2000) The development and first clinical use of semipermeable microcapsules (artificial cells) as a compact artificial kidney. Ther. Apher. 4: 108–116.

    Google Scholar 

  22. Bruni, S. and Chang, T.M.S. (1991) Encapsulated hepatocytes for controlling hyperbilirubinemia in Gunn rats. Int. J. Artificial Organs 14: 239–242.

    Google Scholar 

  23. Miura, Y.; Yoshikawa, N.; Akimoto, T. and Yagi, K. (1990) Therapeutic effect of hepatocytes entrapped within Ca-alginate. Ann. N.Y. Acad. Sci. 613: 475–478.

    Google Scholar 

  24. Cai, Z.H.; Shi, Z.Q.; Sherman, M. and Sun, A.M. (1989) Development and evaluation of a system of microencapsulation of primary rat hepatocytes. Hepatology 10: 855–860.

    Article  CAS  Google Scholar 

  25. Winn, S.R.; Tresco, P.A.; Zielinski, B. and Greene, L.A. (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC12 cells. Exp. Neurol. 113: 327–329.

    Google Scholar 

  26. Emerich, D.F.; Winn, S.R.; Christenson, L.; Palmatier, M.A; Gentile, F.T. and Sanberg, P.R. (1992) A novel approach to neural transplantation in Parkinson’s disease: use of polymer-encapsulated cell therapy. Neurosci. Biobehay. Rev. 16: 437–447.

    Google Scholar 

  27. Fu, X.W. and Sun, A.M. (1989) Microencapsulated parathyroid cells as a bioartificial parathyroid. In vivo studies. Transplantation 47: 432–434.

    Article  CAS  Google Scholar 

  28. Hagihara, Y.; Saitoh, Y.; Iwata, H.; Taki, T.; Hirano, S. and Hayakawa, T. (1997) Transplantation of xenogeneic cells secreting beta-endorphin for pain treatment: analysis of the ability of components of complement to penetrate through polymer capsules. Cell Transplant. 6: 527–530.

    Article  CAS  Google Scholar 

  29. Read, T.-A.; Sorensen, D.R.; Mahesparan, R.; Enger, P.O.; Timpl, R.; Olsen, B.R.; Hjelstuen, M.H.B.; Haraldseth, O. and Bjerkvig, R. (2001) Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat. Biotechnol. 19: 29–34.

    Google Scholar 

  30. Joki, T.; Machluf, M.; Atala, A.; Zhu, J.; Seyfried, N.T.; Dunn, 1.F.; Abe, T.; Carroll, R.S. and Black, P.M. (2001) Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19: 35–39.

    Google Scholar 

  31. Read, T.-A.; Farhadi, M.; Bjerkvig, R.; Olsen, B.R.; Rokstad, A.M.; Huszthy, P.C. and Vajkoczy, P. (2001) Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res. 61: 6830–6837.

    CAS  Google Scholar 

  32. Visted, T.; Bjerkvig, R. and Enger, P.O. (2001) Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neuro-oncol. 3: 201–210.

    CAS  Google Scholar 

  33. Maruyama, M.; Terayama, K.; Ito, M.; Takei, T. and Kitagawa, E. (1995) Hydroxyapatite clay for gap tilling and adequate bone ingrowth. J. Biomed. Mater. Res. 29: 329–336.

    Google Scholar 

  34. Kenley, R.; Marden, L.; Turek, T.; Jin, L.; Ron, E. and Hollinger, J.O. (1994) Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP2). J. Biomed. Mater. Res. 28: 1139–1147.

    Google Scholar 

  35. Diduch, D.R.; Jordan, L.C.M.; Mierisch, C.M. and Balian, G. (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. J. Arthroscopic and Related Surgery 16: 571–577.

    Article  CAS  Google Scholar 

  36. Fragonas, E.; Valente, M.; Pozzi-Mucelli, M.; Toffanin, R.; Rizzo, R.; Silvestri, F. and Vittur, F. (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21: 795–801.

    Article  CAS  Google Scholar 

  37. Knight, M.M.; Bravenboer, J.V.D.B.; Lee, D.A.; van Osch, G.J.V.M.; Weinans, H. and Bader, D.L. (2002) Cell and nucleus deformation in compressed chondrocyte-alginate constructs: temporal changes and calculation of cell modulus. Biochim. Biophys. Acta 1570: 1–8.

    Google Scholar 

  38. Miralles, G.; Baudoin, R.; Dumas, D.; Baptiste, D.; Hubert, P.; Stoltz, J.F.; Dellacherie, E.; Mainard, D.; Netter, P. and Payan, E. (2001) Sodium alginate sponges with or without sodium hyaluronate: In vitro engineering of cartilage. J. Biomed. Mater. Res. 57: 268–278.

    Google Scholar 

  39. Sufan, W.; Suzuki, Y.; Tanihara, M.; Ohnishi, K.; Suzuki, K.; Endo, K. and Nishimura, Y. (2001) Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J. Neurotrauma 18: 329338.

    Google Scholar 

  40. Kataoka, K.; Suzuki, Y.; Kitada, M.; Ohnishi, K.; Suzuki, K.; Tanihara, M.; Ide, C.; Endo, K. and Nishimura, Y. (2001) Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats. J. Biomed. Mater. Res. 54: 373–384.

    Google Scholar 

  41. Winn, S.R.; Hammang, J.P.; Emerich, D.F.; Lee, A.; Palmiter, R.D. and Baetge, E.E. (1994) Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc. Natl. Acad. Sci. USA 91: 2324–2328.

    Google Scholar 

  42. Diamond, D.A. and Caldamone, A.A. (1999) Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J. Urol. 162: 1185–1188.

    Article  CAS  Google Scholar 

  43. Plunkett, M.L. and Hailey, J.A. (1990) An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab. Invest. 62: 510–517.

    Google Scholar 

  44. Hoffinan, J.; Schirner, M.; Menrad, A. and Schneider, M.R. (1998) A higly sensitive model for quantification of in vivo tumor angiogenesis induced by alginate-encapsulated tumor cells. Cancer Res. 57: 3847–3851.

    Google Scholar 

  45. Hartmann, M.; Holm, O.B.; Johansen, G.A.; Skjâkk-Bræk, G. and Stokke, B.T. (2002) Mode of action of recombinant Azotobacter vinelandii mannuronan C-5 epimerases AlgE2 and AlgE4. Biopolymers 63: 7788.

    Article  CAS  Google Scholar 

  46. Ertesväg, H.; Doseth, B.; Larsen, B.; Skjâk-Bræk, G. and Valla, S. (1994) Cloning and expression of an Azotobacter vinelandii mannuronan C- 5-epimerase gene. J. Bacteriol. 176: 2846–2853.

    Google Scholar 

  47. Grasdalen, H. (1983) High-field, H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr. Res. 118: 255–260.

    Google Scholar 

  48. Smidsrod, O. and Draget, K.I. (1996) Chemistry and physical properties of alginates. Carbohydrates in Europe 14: 6–13.

    Google Scholar 

  49. Smidsrod, O. (1974) Molecular basis for some physical properties of alginates in the gel state. Faraday Discussions of the Chemical Society 57: 263–274.

    Article  Google Scholar 

  50. Haug, A. (1964) Report No. 30, PhD Thesis, Norwegian Univeristy of Science and Technology, Trondheim (Norway).

    Google Scholar 

  51. Sutherland, I.W. (1991) Alginates. In: Byrom, D. (Ed.) Biomaterials; Novel materials from biological sources. Macmillan, New York; pp. 309–331.

    Google Scholar 

  52. Clark, A.H. and Ross-Murphy, S.B. (1987) Structural and mechanical properties of biopolymer gels. Adv. Polymer Sci. 83: 57–192.

    Google Scholar 

  53. Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C. and Thom, D. (1973) Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32: 195–198.

    Google Scholar 

  54. Stokke, B.T.; Draget, K.I. and Yuguchi, Y. (1997) Small-angle X-ray scattering and rheological characterization of alginate gels. Macromolec. Symp. 120: 97–101.

    Google Scholar 

  55. Gàserod, O. (1998) Microcapsules of alginate–chitosan: A study of capsule formation and functional properties. PhD Thesis, Norwegian Univeristy of Science and Technology, Trondheim (Norway). ISBN 82471–0273–0.

    Google Scholar 

  56. Martinsen, A.; Skjak-Bræk, G. and Smidsrod, O. (1989) Alginate as an immobilization material: 1. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33: 79–89.

    Google Scholar 

  57. Skjâlc-Bræk, G.; Grasdalen, H. and Smidsrod, O. (1989) Inhomogeneous polysaccharide ionic gels. Carbohydr. Res. 10: 31–54.

    Google Scholar 

  58. Thu, B.; Gâserod, O.; Paus, D.; Mikkelsen, A.; Skjâkk-Bræk, G.; Toffanin, R.; Vittur, F. and Rizzo, R. (2000) Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers 53: 60–71.

    Article  CAS  Google Scholar 

  59. Thu, B.; Bruheim, P.; Espevik, T.; Smidsrod, O.; Soon-Shiong, P. and Skjak-Braek, G. (1996) Alginate polycation microcapsules. II. Some functional properties. Biomaterials 17: 1069–1079.

    Google Scholar 

  60. Dulieu, C.; Poncelet, D. and Neufeld, R.J. (1999) Encapsulation and Immobilization Techniques. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston; pp. 3–17.

    Chapter  Google Scholar 

  61. Klokk, T.I. and Melvik, J.E. (2002) Controlling the size of alginate beads by use of a high electrostatic potential. J. Microencapsulation 19: 415–424.

    Article  CAS  Google Scholar 

  62. Strand, B.L.; Gâserod, O.; Kulseng, B.; Espevik, T. and Skjâk-Bræk, G. (2002) Alginate-polylysinealginate microcapsules–Effect of size reduction on capsule properties. J. Microencapsulation 19: 615–630.

    Article  CAS  Google Scholar 

  63. Pjanovic, R.; Goosen, M.F.A.; Nedovic, V. and Bugarski, B. (2001) Immobilization/encapsulation of cells using electrostatic droplet generation. Minerva Biotecnologica 12: 241–248.

    Google Scholar 

  64. Poncelet, D.; Bugarski, B.; Amsden, B.G.; Zhu, J.; Neufeld, R. and Goosen, M.F.A. (1994) A parallel plate electrostatic droplet generator: parameters affecting the microbead size. Appl. Microbiol. Biotechnol. 42: 251–255.

    Google Scholar 

  65. Halle, J.P.; Leblond, F.A.; Pariseau, J.F.; Jutras, P.; Brabant, M.J. and Lepage, Y. (1994) Studies on small (<300 gm) microcapsules: Il-Parameters governing the production of alginate beads by high voltage electrostatic pulses. Cell Transplant. 3: 365–372.

    Google Scholar 

  66. King, A.; Sandler, S.; Anderson, A.; Hellestr0m, B.; Kulseng, B. and Skjâkk-Bræk, G. (1999) Glucose metabolism in vitro of cultured and transplanted mouse pancreatic islets microencapsulated by means of a high-voltage electrostatic field. Diabetes Care 22: 121–126.

    Google Scholar 

  67. Martinsen, A.; Storrs), 1. and Skjâk-Bræk, G. (1992) Alginate as immobilization material: III. Diffusional properties. Biotechnol. Bioeng. 39: 186–194.

    Google Scholar 

  68. Poncelet, D. (2001) Production of alginate beads by emusification/internal gelation. Ann. N.Y. Acad. Sci. 944: 74–82.

    Google Scholar 

  69. Tanaka, H.; Matsumura, M. and Veliky, I.A. (1984) Diffusion Characteristics of Substrates in Ca-Alginate Gel Beads. Biotechnol. Bioeng. 26: 53–58.

    Google Scholar 

  70. SmidsrOd, O. and Skjakk-Bræk, G. (1990) Alginate as Immobilization Matrix for Cells. TIBTECH 8: 7178.

    Article  Google Scholar 

  71. Wideroe, H. and Danielsen, S. (2001) Evaluation of the use of Sr2+ in alginate immobilization of cells. Die Naturwissenschaften 88: 224–228.

    Article  CAS  Google Scholar 

  72. Brodelius, P. and Vandamme, E.J. (1987) Immobilized cell systems. In: Rehm, H.J. and Reed, G. (Eds.) Biotechnology. Verlag Chemie, Weinheim; pp. 405–464.

    Google Scholar 

  73. Schnabl, H. and Zimmermann, U. (1989) Immobilization of plant protoplasts. In: Bajay, Y.P.S. (Ed.) Plant protoplasts and genetic engeneering. Springer Verlag, New York; pp. 63–96.

    Chapter  Google Scholar 

  74. Bunger, C.M.; Jahnke, A.; Stange, J.; de Vos, P. and Hopt, U.T. (2002) MTS Colorimetric Assay in Combination with a Live-Dead Assay for Testing Encapsulated L929 Fibroblasts in Alginate Poly-l-Lysine Microcapsules In Vitro. Artif. Organs 26: 111–116.

    Google Scholar 

  75. Kulseng, B.; Skjakk-Bræk, G.; Ryan, L.; Andersson, A.; King, A.; Faxvaag, A. and Espevik, T. (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67: 978–984.

    Article  CAS  Google Scholar 

  76. Calafiore, R.; Basta, G.; Boselli, C.; Bufalari, A.; Giustozzi, G.M.; Luca, G.; Tortoioli, C. and Brunetti, P. (1997) Effects of alginate/polyaminoacidic coherent microcapsule transplantation in adult pigs. Transplant. Proc. 29: 2126–2127.

    Google Scholar 

  77. Calafiore, R.; Luca, G.; Calvitti, M.; Neri, L.M.; Basta, G.; Capitani, S.; Becchetti, E. and Brunetti, P. (2001) Cellular support systems for alginate microcapsules containing islets, as composite bioartificial pancreas. Ann. N.Y. Acad. Sci. 944: 240–251.

    Google Scholar 

  78. Tanaka, H.; Kurosawa, H.; Kokufuta, E. and Veliky, I.A. (1984) Preparation of Immobilized Glucoamylase Using Ca-Alginate Gel Coated with Partially Quaternized Poly(ethyleneimine). Biotechnol. Bioeng. 26: 1393–1394.

    Google Scholar 

  79. Robitaille, R.; Pariseau, J.F.; Leblond, F.A.; Lamoureux, M.; Lepage, Y. and Halle, J.P. (1999) Studies on small (<350 pm) alginate-poly-L-lysine microcapsules. III. Biocompatibility of smaller versus standard microcapsules. J. Biomed. Mater. Res. 44: 116–120.

    Google Scholar 

  80. Chen, J.P.; Chu, I.M.; Shiao, M.Y.; Hsu, B.R. and Fu, S.-H. (1998) Microencapsulation of islets in PEG-amine modified alginate-poly(L-lysine)-alginate microcapsules for constructing bioartificial pancreas. J. Ferm. Bioeng. 86: 185–190.

    Google Scholar 

  81. de Vos, P.; De Haan, B. and van Schilfgaarde, R. (1997) Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18: 273–278.

    Article  Google Scholar 

  82. Kulseng, B.; Thu, B.; Espevik, T. and Skjâk-Bræk, G. (1997) Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant. 6: 387–394.

    Article  CAS  Google Scholar 

  83. Okada, N.; Miyamoto, H.; Yoshioka, T.; Sakamoto, K.; Katsume, A.; Saito, H.; Nakagawa, S.; Ohsugi, Y. and Mayumi, T. (1997) Immunological studies of SK2 hybridoma cells microencapsulated with alginatepoly(L)lysine-alginate (APA) membrane following allogeneic transplantation. Biochem. Biophys. Res. Commun. 230: 524–527.

    Google Scholar 

  84. Thu, B.; Kulseng, B.; Espevik, T. and Skjäk-Bræk, G. (1997) Diffusion of hormones, immunoglobulins and cytokines into alginate/polylysine capsules. Cell Transplant. 6: 378–394.

    Google Scholar 

  85. Abraham, S.M.; Vieth, R.F. and Burgess, D.J. (1996) Novel technology for the preparation of sterile alginate -poly-l-lysine microcapsules in a bioreactor. Pharm. Dev. Technol. 1: 63–68.

    Google Scholar 

  86. Chang, P.L. (1996) Microencapsulation - an alternative approach to gene therapy. Transfus. Sci. 17: 3543.

    Google Scholar 

  87. Gâser0d, O.; Sannes, A. and Skjâk-Bræk, G. (1999) Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials 20: 773–783.

    Google Scholar 

  88. Gâserßd, O.; Smidsrßd, O. and Skjâk-Bræk, G. (1998) Microcapsules of alginate and chitosan I. A quantitative study of the interaction between alginate and chitosan. Biomaterials 19: 1815–1825.

    Google Scholar 

  89. Gàser0d, O.; Jolliffe, I.G.; Hampson, F.C.; Dettmar, P.W. and Skjakk-Bræk, G. (1998) The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int. J. Pharm. 175: 237–246.

    Google Scholar 

  90. Yan, C.; Zhang, H.; Lambert, D.M.; Ussery, M.A. and Nielsen, C.J. (1998) In Vitro study of alginate/chitosan microspheres for controlled release of the anti-HIV drug T20. In: 1998 Proceedings Book. The Controlled Release Society, Inc., Deerfield, US; pp. 510–511.

    Google Scholar 

  91. Quong, D.; Groboillot, A.; Darling, G.D., Poncelet, D. and Neufeld, R.J. (1997) Microencapsulation within cross-linked chitosan membranes. In: Muzzarelli, R.A.A. and Peter, M.G. (Eds.) Chitin Handbook. Atec Edizioni, Grottammare; pp. 405–410.

    Google Scholar 

  92. Li, X. (1996) The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells. Biotechnol. Appl. Biochem. 23: 269–271.

    Google Scholar 

  93. Okhamafe, A.O.; Amsden, B.; Chu, W. and Goosen, M.F. (1996) Modulation of protein release from chitosan-alginate microcapsules using the pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate. J. Microencapsulation 13: 497–508.

    Article  CAS  Google Scholar 

  94. Alexakis, T.; Boadi, D.K.; Quong, D.; Groboillot, A.; O’Neill, 1.; Poncelet, D. and Neufeld, R.J. (1995) Microencapsulation of DNA within alginate microspheres and crosslinked chitosan membranes for in vivo application. Appl. Biochem. Biotechnol. 50: 93–106.

    Google Scholar 

  95. Zimmermann, U.; Hasse, C.; Rothmund, M. and Kuhtreiber, W.M. (1999) Biocompatible encapsulation materials: Fundamentals and application. In: Kühtreiber, W.M.; Lanza R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston; pp. 40–52.

    Chapter  Google Scholar 

  96. Shapiro, L. and Cohen, S. (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18: 583–590.

    Article  CAS  Google Scholar 

  97. Gray, D.W. (2001) An overview of the immune system with specific reference to membrane encapsulation and islet transplantation. Ann. N.Y. Acad. Sci. 944: 226–239.

    Google Scholar 

  98. Rokstad, A.M.; Kulseng, B.; Strand, B.L.; Skjäk-Bræk, G. and Espevik, T. (2001) Tranplantation of alginate microcapsules with proliferating cells in mice. Capsular overgrowth and survival of encapsulated cells of mice and human origin. Ann. N.Y. Acad. Sci. 944: 216–225.

    Google Scholar 

  99. Falorni, A.; Basta, G.; Santeusanio, F.; Brunetti, P. and Calafiore, R. (1996) Culture maintenance of isolated adult porchine pancreatic islets in three-dimensional gel matrices: morphological and functional results. J. Cell. Physiol. 152: 422–429.

    Google Scholar 

  100. Fraser, R.B.; MacAulay, M.A.; Wright, J.R.J.; Sun, A.M. and Rowden, G. (1995) Migration of macrophage-like cells within encapsulated islets of Langerhans maintained in tissue culture. Cell Transplant. 4: 529–534.

    Article  CAS  Google Scholar 

  101. Constantinidis, 1.; Rask, I.; Long, R.C., Jr. and Sambanis, A. (1999) Effects of alginate composition on the metabolic, secretory, and growth characteristics of entrapped beta.TC3 mouse insulinoma cells. Biomaterials 20: 2019–2027.

    Google Scholar 

  102. Papas, K.K.; Long, Jr., R.C.; Constantinidis, 1. and Sambanis, A. (1997) Role of ATP and Pi in the mechanism of insulin secretion in the mouse insulinoma betaTC3 cell line. Biochem. J. 326: 807–814.

    Google Scholar 

  103. Benson, J.P.; Papas, K.K.; Constantinidis, 1. and Sambanis, A. (1997) Towards the development of a bioartificial pancreas: effects of poly-L-lysine on alginate beads with BTC3 cells. Cell Transplant. 6: 395402.

    Google Scholar 

  104. O’Connor, S.M.; Stenger, D.A.; Shaffer, K.M. and Ma, W. (2001) Survival and neunte outgrowth of rat cortical neurons in three-dimensional agarose and collagen gel matrices. Neurosci. Lett. 304: 189–193.

    Google Scholar 

  105. Constantinidis, I.; Long Jr., R.C.; Weber, C.J.; Salley, S. and Sambanis, A. (2001) Non-Invasive monitoring of a bioartificial pancreas in vitro and in vivo. Ann. N.Y. Acad. Sci. 944: 83–95.

    Google Scholar 

  106. Yang, H. and Wright, J.R.J. (1999) Calcium Alginate. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston; pp. 3–17.

    Google Scholar 

  107. Espevik, T.; Skjâlc-Bræk, G.; Smidsrßd, O.; Soon-Shiong, P. and Thu, B. (1996) Alginate poly-lysine capsules. 11: Some functional properties. Biomaterials 17: 1069–1079.

    Google Scholar 

  108. Thu, B.; Espevik, T.; Smidsrod, O.; Soon-Shiong, P. and Skjäk-Bræk, G. (1996) Alginate poly-cation microcapsules I: Interactions between alginate and polycation. Biomaterials 17: 1031–1040.

    Google Scholar 

  109. Ma, X.; Vacek, 1. and Sun, A. (1994) Generation of alginate-poly-l-lysine-alginate (APA) biomicrocapsules: the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22: 43–69.

    Google Scholar 

  110. Hunkeler, D.; Rehor, A.; Ceausoglu, I.; Schuldt, U.; Canaple, L.; Bernhard, P.; Renken, A.; Rindisbacher, L. and Angelova, N. (2001) Objectively assessing bioartificial organs. Ann. N.Y. Acad. Sci. 944: 456–471.

    Google Scholar 

  111. Espevik, T.; Otterlei, M.; Skjäk-Bræk, G.; Ryan, L.; Wright, S.D. and Sundan, A. (1993) The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur. J. Immunol. 23: 255–261.

    Google Scholar 

  112. Kulseng, B.; Skjäk-Bræk, G.; Foiling, I. and Espevik, T. (1996) TNF production from peripheral blood mononuclear cells in diabetic patients after stimulation with alginate and lipopolysaccharide. Scand. J. Immunol. 43: 335–340.

    Google Scholar 

  113. Skjakk-Bræk, G. and Espevik, T. (1996) Application of alginate gels in biotechnology and biomedicine. Carbohydrates in Europe 14: 19–25.

    Google Scholar 

  114. Stokke, B.T.; Smidsr0d, O.; Zanetti, F.; Skjâk-Bræk, G. and Strand, W. (1993) Distribution of uronate residues in alginate chains in relation to alginate gelling properties - 2: Enrichment of [3-D-mannurinoc acid and depletion of a-L-guluronic acid in sol fraction. Carbohydr. Res. 21: 39–46.

    Google Scholar 

  115. Ertesvâg, H.; Hoidal, H.K.; Hals, 1.K.; Rian, A.; Doseth, B. and Valla, S. (1995) A family of modular type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Molecular Microbiology 16: 719–731.

    Google Scholar 

  116. Thomas, S. (2000) Alginate dressings in surgery and wound managment - part 1. J. Wound. Care 9: 5660.

    Google Scholar 

  117. Thomas, S. (2000) Alginate dressings in surgery and wound management: part 2. J. Wound. Care 9: 115–119.

    Google Scholar 

  118. Thomas, S. (2000) Alginate dressings in surgery and wound management: part 3. J. Wound. Care 9: 163–166.

    Google Scholar 

  119. Mandel, K.G.; Daggy, B.P.; Brodie, D.A. and Jacoby, H.I. (2000) Review article. Alginate-raft formulations in the treatment of heartburn and acid reflux. Aliment. Pharmacol. Ther. 14: 669–690.

    Google Scholar 

  120. Hagstam, H. (1986) Alginates and heartburn–Evaluation of a medicine with a mechanical mode of action. In: Phillips, G.O. (Ed.) Gums and stabilizers in the food industry. Elsevier, Amsterdam; pp. 363–370.

    Google Scholar 

  121. Onstlyen, E. (1995) Hydration induced swelling of alginate based matrix tablets at GI-tract pH conditions. In: Karse, D.R. and Stephenson, R.A. (Eds.) Excipients and delivery systems for pharmaceutical formulations. The Royal Society of Chemistry, Cambridge; pp. 108–122.

    Google Scholar 

  122. Goosen, M.F.A.; O’Shea, G.M. and Gharapetian, H.M. (1985) Optimization of Microencapsulation Parameters: Semipermeable Microcapsules as a Bioartificial Pancreas. Biotechnol. Bioeng. 27: 146–150.

    Google Scholar 

  123. Wandrey, C. and Vidal, D.S. (2001) Purification of polymeric biomaterials. Ann. N.Y. Acad. Sci. 944: 187–198.

    Google Scholar 

  124. Soon-Shiong, P. (1994) Insulin independence in a type I diabetic patient after encapsulated islet transplantation. Lancet 343: 950–951.

    Article  CAS  Google Scholar 

  125. Skaugrud, Ø.; Hagen, A.; Borgersen, B. and Dornish, M. (1999) Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnol. Genet. Eng. Rev. 16: 23–40.

    Google Scholar 

  126. Dornish, J.M.; Kaplan, D. and Skaugrud, Ø. (2001) Standards and guidelines for biopolymers in tissue-engineered medical products. ASTM alginate and chitosan standard guides. Ann. N.Y. Acad. Sci. 944: 388397.

    Google Scholar 

  127. F 2064 -Standard guide for characterization and testing of alginates as starting materials intended for use in biomedical and tissue-engineered medical products application. Annual Book of ASTM Standards. ASTM International, West Conshohocken, PA, Vol. 13. 01; pp. 1595–1602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Melvik, J.E., Dornish, M. (2004). Alginate as a Carrier for Cell Immobilisation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics