Skip to main content

Immobilization of Cells and Enzymes Using Electrostatic Droplet Generation

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Selection of support material and method of immobilization is made by weighing the various characteristics and required features of the cell/enzyme application against the properties and limitations of the combined immobilization and support. A number of practical aspects should be considered before embarking on experimental work to ensure that the final immobilized cell or enzyme preparation is fit for the planned purpose or application to operate at optimum effectiveness. The mechanism of alginate droplet formation as well as experimental parameters for producing small hydro gel beads using an electrostatic droplet generator was investigated. It was found that microbead size was a function of needle diameter, charge arrangement (i.e. electrode geometry and spacing) and strength of the electric field. The process of alginate droplet formation under the influence of electrostatic forces was assessed with an image analysis/video system and revealed distinct stages; after a voltage was applied the liquid meniscus at the needle tip was distorted from a spherical shape into an inverted cone-like shape. Alginate solution flowed into this cone at an increasing rate causing formation of a neck-like filament. When this filament broke away, producing small droplets, the meniscus relaxed back to a spherical shape until flow of the alginate caused the process to start again. Various cells suspensions and enzymes were subjected to a high voltage immobilization process in order to assess the effects of electric fields on animal cell viability and enzyme activity. There was no detectable loss in cell viability or enzyme activity after the voltage was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goosen, M.F.A.; Mahmud, E.S.C.; M-Ghafi, A.S.; M-Hajri, H.A.; Al-Sinani, Y.S. and Bugarski, M.B. (1997) Immobilization of cells using electrostatic droplet generation. In: Bickerstaff, G.F. (Ed.) Immobilization of Enzymes and Cells. Humana Press. Totowa, NJ, Chapter 20; pp. 167–174.

    Google Scholar 

  2. Balchhandran, W. and Bailey, A.G. (1984) The dispersion of liquids using centrifugal and electrostatic forces. IEEE Trans. Ind. App. IA20: 682–686.

    Google Scholar 

  3. Fillimore, G.L. and Lokeren, D.C. (1982) Multinozzle drop generator which produces uniform break-up of continuous jets. Institute of Electrical and Electronics Engineers, Annual Meeting of the Industrial Application Society: 991–998.

    Google Scholar 

  4. Bugarski, B.; Jovanovie, G. and Vunjak G. (1993) Bioreactor systems based on microencapsulated animal cell cultures. In: Goosen, M.F.A. (Ed.) Fundamentals of Animal Cell Encapsulation and Immobilization. CRC Press Inc., Boca Raton, Florida, Chapter 12; pp. 267–296.

    Google Scholar 

  5. Romo, S. and Perezmartinez, C (1997) The use of immobilization in alginate beads for long-term storage of Pseudanabaena-Galeata (Cyanobacte-ria) in the laboratory. J. Phycol. 33: 1073–1076.

    Google Scholar 

  6. Walsh, P.K.; Isdell, F.V.; Noone, S.M.; Odonovan. M.G. and Malone, D.M. (1996) Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: effect of physical and chemical properties of gels. Enzyme Microb. Technol. 18: 366–372.

    Google Scholar 

  7. Green, K.D.; Gill, I.S.; Khan, J.A. and Vulfson, E.N. (1996) Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents. Biotechnol. Bioeng. 49: 535–543.

    Google Scholar 

  8. Poncelet, D.; Bugarski, B.; Amsden, B.G.; Zhu, J.; Neufeld, R and Goosen, M.F.A. (1994) A parallel-plate electrostatic droplet generator: parameters affecting microbead size. Appl. Microbiol. Biotechnol. 42: 251–255.

    Google Scholar 

  9. Poncelet, D.; Desmet, B.P.; Beaulieu, C.; Huguet, M.L.; Fournier, A. and Neufeld, R.J. (1995) Production of alginate beads by emulsification internal gelation. Appl. Microbiol. Biotechnol. 43: 644–650.

    Google Scholar 

  10. Begin, F.; Castaigne, F. and Goulet, J. (1991) Production of alginate beads by a rotative atomizer. Biotechnol. Tech. 5: 459–464.

    Google Scholar 

  11. Ogbonna, J.C.; Matsumura, M. and Kataoka, H. (1991) Effective oxygenation of immoblized cells through reduciton in bead diameter: a review. Process Biochem. 26: 109–121.

    Article  CAS  Google Scholar 

  12. Klein, J.; Stock, J. and Vorlop, K.D. (1983) Pore size and properties of spherical Ca-alginate biocatalysts. Eur. J. Appl. Microbiol. Biotechnol. 18: 86–91.

    Google Scholar 

  13. Levee, M.G.; Lee, G.M.; Pack. S.H. and Palsson, B.O. (1994) Microencapsulated human bone-marrow cultures: a potential culture system for the clonal outgrowth of hematopoietic progenitor cells. Biotechnol. Bioeng. 43: 734–739.

    Google Scholar 

  14. Kwok, K.K.; Groves, M.J. and Burgess, D.J. (1991) Produciton of 5–15 mm diameter alginate polylysine microcapsules by air-atomization technique. Pharm. Res. 8: 341–344.

    Google Scholar 

  15. Bugarski, B.; Li, Q.L.; Goosen, M.F.A.; Poncelet, D.; Neufeld, R.J. and Vunjak, G. (1994) Electrostatic droplet generation: mechanism of polymer droplet formation. AICHE J. 40: 1026–1031.

    Article  Google Scholar 

  16. Halle, J.P.; Leblond, F.A.; Pariseau, J.F.; Jutras, P.; Brabant, M.J. and Lepage, Y. (1994) Studies on small (less than 300 mm) microcapsules. II. Parameters governing the production of alginate beads by high-voltage electro-static pulses. Cell Transplant. 3: 365–372.

    Google Scholar 

  17. Prusse, U.; Fox, B.; Kirchhof, M.; Bruske, F.; Breford, J. and Vorlop, K.D. (1998) New process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21: 29–33.

    Google Scholar 

  18. Brandenberger, H. and Widmer, F. (1997) Monodisperse particle production: a new method to prevent drop coalescence using electrostatic forces. J. Electrostat. 45: 227–238.

    Article  Google Scholar 

  19. Ghosal, S.K.; Talukdar, P. and Pal, T.K. (1993) Standardization of a newly designed vibrating capillary apparatus for the preparation of microcapsulses. Chem. Eng. Technol. 16: 395–398.

    Google Scholar 

  20. Seifert, D.B. and Phillips, J.A. (1997) Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Prog. 13: 562–568.

    Google Scholar 

  21. Serp, D.; Cantana, E.; Heinzen, C.; von Stockar, U. and Marison, I.W. (2000) Characterization of encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70 (1): 41–53.

    Article  CAS  Google Scholar 

  22. Bugarski, B.; Amsden, B.; Neufeld, R.; Poncelet, D. and Goosen, M.F.A. (1994) Effect of electrode geometry and charge on the production of polymer micobeads by electrostatics. Can. J. Chem. Eng. 72: 517–522.

    Google Scholar 

  23. Poncelet, D.; Babak, V.G; Neufeld, R.J.; Goosen, M. and Bugarski, B. (1999) Theory of elecrostatic dispersion of polymer solution in the production of microgel beds containing biocatalyst. Adv. Colloid Interface Sci. 79 (2–3): 213–228.

    Article  CAS  Google Scholar 

  24. Rayleigh, Lord (1882) On the equilibrium of liquid condusting masses charged with electricity. Phil. Mag. 14: 184–186.

    Google Scholar 

  25. Nawab, M.A. and Mason, S.G. (1958) The preparation of uniform emulsions by electrical dispersion. J. Colloid Sci. 13: 179–187.

    Article  CAS  Google Scholar 

  26. Sample, S.B. and Bollini, R. (1972) Production of liquid aerosols by harmonic electrical spraying. J. Colloid. Sci. 41: 185–193.

    Google Scholar 

  27. Bugarski, B.; Vunjak, G. and Goosen, M.F.A. (1999) Principles of bioreactor design for encapsulated cells. In: Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) Cell Encapsulation Technology and Therapeutics. Birkhauser, Boston; Chapter 30; pp. 395–416.

    Chapter  Google Scholar 

  28. Bugarski, M.B.; Smith, J.; Wu, J. and Loosen, M.F.A. (1993) Methods for animal cell immobilization using electrostatic droplet generation. Biotechnol. Tech. 7 (9): 677–682.

    Article  CAS  Google Scholar 

  29. Bugarski, M.B.; Sajc, L.; Playsié, M.; Goosen, M.F.A. and Jovanovie, G. (1997) Semipermeable alginate-PLO microcapsule as a bioartificial pancreas. In: Funatsu, K.; Shirai, Y. and Matsushita, T. (Eds.) Animal Cell Technology, Basic and Applied Aspects. Volume 8, Kluwer Academic Publishers, London, Boston, Dordrecht; pp. 479–486.

    Chapter  Google Scholar 

  30. Rosinski, S.; Lewinska, D.; Migaj, M.; Wozniewicz, B. and Werynski, A. (2002) Electrostatic microencapsulation of parathyroid cells as a tool for the investigation of cell’s activity after transplantation. Landbauforschung Völkenrode SH 241: 47–50.

    CAS  Google Scholar 

  31. Pjanovie, R.; Goosen, M.F.A.; Nedovié, V. and Bugarski, M.B. (2000) Immobilization/encapsulation of cells using electrostatic droplet generation. Minerva Biotechnology 12: 241–248.

    Google Scholar 

  32. Nedovié, A.V.; Obradovic, B.; Leskosek, I.; Peke, R. and Bugarski, B. (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem. 37: 17–22.

    Article  Google Scholar 

  33. Nedovié, V.A.; Obradovie, B.; Poncelet, D.; Goosen, M.F.A.; Leskosek-CukaloviC, 1. and Bugarski, B. (2002) Cell immobilisation by electrostatic droplet generation. Landbauforschung Volkenrode SH 241: 11–18.

    Google Scholar 

  34. Knezeviô, Z.; Bobie, S.; Milutinovie, A.; Obradoviô, B.; Mojovié, Lj. and Bugarski, B. (2002) Alginate immobilized lipase by electrostatic extrusion. Process Biochem. 38: 313–318.

    Article  Google Scholar 

  35. Bugarski, B. and Goosen, M.F.A. (1996) Methods for animal cell immobilization using electrostatic extrusion. In: Kobayashi, T.; Kitagawa, Y. and Okumura, K. (Eds.) Animal Cell Technology, Basic and Applied Aspects. Volume 6, Kluwer Academic Publishers, London, Boston, Dordrecht; pp. 157–160.

    Google Scholar 

  36. Taylor, G.I. and Van Dyke M.D. (1969) Electrically driven jets. Proc. R. Soc. A. 313: 453–475.

    Google Scholar 

  37. Keshavarz, T.; Ramsden, G.; Phillips, P.; Mussenden, P. and Bucke, C. (1992) Application of electric field for production of immobilized biocatalysts. Biotech. Tech. 6: 445–450.

    Google Scholar 

  38. Hendricks, C.D.Jr. (1962) Charged droplet experiments. J. Colloid Sci. 17: 249–259.

    Article  CAS  Google Scholar 

  39. Mojovié, Lj.; Siler-Marinkovie, S.; Kukié, G.; Bugarski, M.B. and Vunjak-Novakovie, G.V. (1994) Rhizpus arrhizus lipase-catalyzed interesterification of palm oil midfraction in a gas-lift reactor. Enzyme Microb. Technol. 16: 159–162.

    Google Scholar 

  40. Poncelet, D.; Neufield, R.J.; Goosen, M.F.A.; Bugarski, M.B. and Babak, V. (1999) Formation of microgel beads by electrostatic dispersion of polymer solutions. AIChE J. 45: 2018–2023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bugarski, B.M., Obradovic, B., Nedovic, V.A., Poncelet, D. (2004). Immobilization of Cells and Enzymes Using Electrostatic Droplet Generation. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics