Skip to main content

Use of Vibration Technology for Jet Break-Up for Encapsulation of Cells and Liquids in Monodisperse Microcapsules

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Summary

Applying a vibration on a laminar jet for controlled break-up into monodisperse microcapsules is one among different extrusion technologies for encapsulation of animal and plant cells, microbes, enzymes and liquids [1].

The vibration technology is based on the principle that a laminar liquid jet breaks up into equally sized droplets by a superimposed vibration. In the late 19th century, Lord Rayleigh theoretically analysed the instability of liquid jets [2]. He showed that the frequency for maximum instability is related to the velocity of the jet and the nozzle diameter.

The optimal vibration parameters are easily and quickly determined in the light of a stroboscope. Once determined, the parameters can be reset in the future, making the process highly reproducible.

Optimal production parameters for beads and capsules including monodispersity parameter for narrow size distributions and examples of encapsulation of cells and liquids in microcapsules will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poncelet, D.; Bugarski, B.; Amsden, B.G.; Zhu, J.; Neufeld, R. and Goosen, M.F.A. (1994) A parallel-plate electrostatic droplet generator — parameters affecting microbead size. Appl. Microbiol. Biotechnol. 42: 251–255.

    Article  CAS  Google Scholar 

  2. Lord Rayleigh (1878) On the stability of jets. Proc. London Math. Soc. 10: 4–13.

    Google Scholar 

  3. Gutcho, M.H. (1979) Microcapsules and other capsules: advances since 1975. Noyes Data Corporation, New Jersey.

    Google Scholar 

  4. Harpneier, W. (1986) Immobilisierte Biokatalysatoren. Springer-Verlag, Berlin.

    Google Scholar 

  5. Kegel, B.H.R. (1988) Mikroverkapselung durch Hydroprillierung. Thesis, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  6. Heinzen, Ch. (1995) Herstellung von monodispersen Mikrokugeln durch Hydroprillen. Thesis, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  7. Lee, G.M. and Palsson, B.O. (1993) Stability of antibody productivity is improved when hybridoma cells are entrapped in calcium alginate beads. Biotechnol. Bioeng. 42: 1131–1135.

    Article  CAS  Google Scholar 

  8. Poncelet, D. (1997) Fundamentals of dispersion in encapsulation technology. In: Godia, F. and Poncelet, D. (Eds.) Proceedings of the Int. Workshop Bioencapsulation VI, Barcelona, Spain, August 30-September 1, 1997; UAB Barcelona; TI. 1, pp. 1–4.

    Google Scholar 

  9. Brandenberger, H. and Widmer, F. (1998) A new multinozzle encapsulation/immobilization system to produce uniform beads of alginate. J. Biotechnol. 63: 73–80.

    Article  CAS  Google Scholar 

  10. Goodwin, J.T. and Somerville, G.R. (1974) Microencapsulation by physical methods. CHEMTECH 4: 623–626.

    CAS  Google Scholar 

  11. Prusse, U.; Bruske, F.; Breford, J. and Vorlop, K. D. (1998) Improvements to the jet cutting process for manufacturing spherical-particles from viscous polymer solutions. Chem. Ing. Tech. 70: 556–560.

    Article  Google Scholar 

  12. Somerville, G.R. and Goodwin, J.T. (1980) Microencapsulation using physical methods. In: Kydonieus, A.F. (Ed.) Controlled release technologies: methods, theory and applications. CRC press, Boca Raton; pp. 155–164.

    Google Scholar 

  13. Kuhtreiber, W.M.; Lanza, R.P. and Chick, W.L. (Eds.) (1999) Cell encapsulation technology and therapeutics. Birkhäuser, Boston.

    Google Scholar 

  14. Vorlop, K.-D. and Klein, J. (1982) New developments in the field of cell immobilization formation of biocatalysts by inotoropic gelation. In: Enzyme technology. Springer, Berlin; pp. 219–235.

    Google Scholar 

  15. Müller, C. (1985) Bildung einheitlicher Feststoffpartikel aus Schmelzen in einer inerten Kühlflüssigkeit (Hydroprilling). Thesis, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  16. Buettiker, R. (1978) Erzeugung von gleich grossen Tropfen mit suspendiertem und gelöstem Feststoff und deren Trocknung im freien Fall. Thesis, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  17. Weber, C. (1931) Zum Zerfall eines Flüssigkeitsstrahls. Zeit für angewandte Mathematik und Mechanik, 11: 136.

    Article  Google Scholar 

  18. Sakai, T.; Sdakata, M.; Saito, M.; Hoshino, M. and Satoshi, S. (1985) Uniform size droplets by longitudinal vibration of newtonian and non-newtonian fluids. ICLASS-82: 37–45.

    Google Scholar 

  19. Bonner, W.A.; Hulett, H.R.; Sweet, R.G. and Herzenberg, L.A. (1972) Fluoroescence activated cell sorting. Rev. Sci. Instr. 43: 404–409.

    Article  CAS  Google Scholar 

  20. Sweet, R.G. (1964) High frequency recording with electrostatically deflected ink jets. Rev. Sci. Instr. 36: 131–136.

    Article  Google Scholar 

  21. Brandenberger, H.; Nüssli, D.; Piëch, V. and Widmer, F. (1999) Monodisperse particle production: a method to prevent drop coalescence using electrostatic forces. J. Electrostatics 45: 227–238.

    Article  CAS  Google Scholar 

  22. Serp, D.; Catana, E.; Heinzen, C.; von Stockar, U. and Marison, I.W. (2000) Characterization of an encapsulation device for the production of mono-disperse alginate beads for cell encapsulation. Biotechnol. Bioeng. 70: 41–53.

    Article  CAS  Google Scholar 

  23. Pernetti, M.; Gugerli, R.; von Stockar, U.; Heinzen, C.; Marison, I.W. and Annesini, M.C. (2001). Animal cell encapsulation within polyelectrolyte and covalent membranes. Proceedings of the IX Int. BRG Workshop, Warsaw, May 11–13 2001; S. VI-3, pp. 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heinzen, C., Berger, A., Marison, I. (2004). Use of Vibration Technology for Jet Break-Up for Encapsulation of Cells and Liquids in Monodisperse Microcapsules. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics