Skip to main content

Liquid Core Caspules for Applications in Biotechnology

  • Chapter
Fundamentals of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8A))

Abstract

Encapsulation is the process by which a gaseous, liquid or solid encapsulant, is surrounded by a continuous film or coating. As a result the core of the capsule contains the encapsulant, which is prevented from contact with the surroundings by the capsule wall or membrane. Capsules are frequently classified with respect to size: macro-, micro-, and nano-capsules, core material or wall polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbs, B.F.; Kermasha, S.; Alli, I. and Mulligan, C.N. (1999) Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50: 213–224.

    Google Scholar 

  2. King, A.H. (1995) Encapsulation of food ingredients: A review of available technology, focusing on hydrocolloids. In: Risch, S.J. and Reineccius, G.A. (Eds.) Encapsulation and Controlled Release of Food Ingredients. ACS Symposium Series 590; pp. 26–39.

    Chapter  Google Scholar 

  3. Chang, P.L. (1999) Encapsulation for somatic gene therapy. Ann. New York Acad. Sci. 875: 146–158.

    Google Scholar 

  4. Chang, T.M. (1999) Artificial cells, encapsulation and immobilization. Ann. New York Acad. Sci. 875: 71–83.

    Google Scholar 

  5. Blandino, A.; Macias, M. and Cantero, D. (2000) Glucose oxidase release from calcium alginate gel capsules. Enz. Microb. Technol. 27: 319–324.

    Google Scholar 

  6. Kim, H.J.; Kim, J.H. and Shin, C.S. (1999) Conversion of D-sorbitol to L-sorbose by Gluconobacter suboxydans cells co-immobilized with oxygen-carriers in alginate beads. Proc. Biochem. 35: 243–248.

    Google Scholar 

  7. Lim F. and Sun A.M. (1980) Microencapsulated islets as bioartificial pancreas. Science 210: 908–910.

    Article  CAS  Google Scholar 

  8. Uludag, H.; De Vos, P. and Tresco, P.A. (2000) Technology of mammalian cell encapsulation. Adv. Drug Del. Syst. 1–2: 29–64.

    Google Scholar 

  9. Chia, S.M.; Leong, K.W.; Li, J.; Xu, X.; Zeng, K.; Er, P.N.; Gao, S. and Yu, H. (2000) Hepatocyte encapsulation for enhanced cellular functions. Tissue Eng. 5: 481–495.

    Article  Google Scholar 

  10. De Vos, P. and Marchetti, P. (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol. Med. 8: 363–366.

    Google Scholar 

  11. Risch, S.J. (1995) Encapsulation: An overview of uses and techniques. In: Risch, S.J. and Reineccius, G.A. (Eds.) Encapsulation and controlled Release of Food Ingredients. ACS Symposium Series 590; pp. 225.

    Chapter  Google Scholar 

  12. Benita, S. (1996) Drugs and the pharmaceutical sciences. In: Benita, S. (Ed.) Microencapsulation, Methods and Industrial Applications. Marcel Dekker Inc., New York; Vol 73; pp. 587–632.

    Google Scholar 

  13. Frangione-Beebe, M.; Rose, R.T.; Kaumaya, P.T. and Schwendeman, S.P. (2001) Microencapsulation of a synthetic peptide epitope for HTLV-1 in biodegradable poly (D, L- lactide-co-glycolide) microspheres using a novel encapsulation technique. J. Microencap. 18: 663–677.

    Google Scholar 

  14. Lin, W.J. and Yu, C.C. (2001) Comparison of protein loaded poly (epsilon-caprolactone) microparticles prepared by the hot-melt technique. J. Microencap. 18: 585–592.

    Article  CAS  Google Scholar 

  15. Esquisabel, A.; Hernandez, R. and Iguartua, M. (1997) Production of BCG alginate-PLL microcapsules by emulsification/internal gelation. J. Microencap. 14: 627–638.

    Article  CAS  Google Scholar 

  16. Poncelet, D. (2001) Production of alginate beads by emulsification internal gelation. Ann. New York Acad. Sci. 944: 74–82.

    Google Scholar 

  17. Lamprecht, A.; Schäfer, U.F. and Lehr, C.-M. (2000) Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate. Europ. J. Pharma. Biopharma. 49: 1–9.

    Google Scholar 

  18. Bachtsi, A.; Boutris, C. and Kiparissides, C. (1996) Production of oil-containing cross-linked poly(vinyl alcohol) microcapsules by phase separation: Effect of process parameters on the capsule size distribution. J. Appl. Polymer Sci. 60: 9–20.

    Google Scholar 

  19. Kulkarni, A.R.; Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M. and Mehat, M.H. (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil applications. J. Control. Rel. 63: 97–105.

    Google Scholar 

  20. Levy, M.-C and Andry, M.-C. (1991) Mixed-walled mcirocapsules made of Cros-linked proteins and polysaccharides: preparation and properties. J. Microencap. 8: 335–347.

    Article  CAS  Google Scholar 

  21. Jang, J. and Lee, K. (2002) Facile fabrication of hollow polystyrene nanocapsules by microemulsion polymerization. Chem. Commun. ( Camb. ) 10: 1089–1099.

    Google Scholar 

  22. Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E. and Benoit, J.-P. (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharma. Res. 19: 875–880.

    Google Scholar 

  23. Kim, C.K.; Yoon, Y.S. and Kong, J.Y. (1995) Preparation and evaluation of flurbiprofen dry elixir as a novel dosage form using a spray-drying technique. Int. J. Pharma. 120: 21–31.

    Google Scholar 

  24. Lee, S.-W.; Kim, M.-H. and Kim, C.-K. (1999) Encapsulation of ethanol by spray drying technique: effects of sodium lauryl sulfate. Int. J. Pharma. 187: 193–198.

    Google Scholar 

  25. Ariga, O.; Itoh, K.; Sano, Y. and Nagura, M. (1994) Encapsulation of biocatalyst with PVA capsules. J. Ferment. Bioeng. 78: 74–78.

    Google Scholar 

  26. Rogers, T.L.; Hu, J.; Yu, Z.; Johnston, K. and Williams, R.O. (2002) A novel particle engineering technology: spray-freezing into liquid. Int. J. Pharma. (in press).

    Google Scholar 

  27. Dewettinck, K. and Huyghebaert, A. (1999) Fluidized bed coating in food technology. Trends Food Sci. Technol. 10: 163–168.

    Google Scholar 

  28. Eshra, A.G.; Elkhodairy, K.A.; Mortada, S.A. and Nada, A.H. (1994) Preparation and evaluation of slow-release pan-coated indomethacin granules. J. Microencap. 11: 271–278.

    Article  CAS  Google Scholar 

  29. Abrahan, S.; Vieth, R. and Diane, J. (1996) Novel technology for the preparation of sterile alginate polylsyine microcapsules in a bioreactor. Pharma. Dev. Technol. 1: 63–68.

    Google Scholar 

  30. Senuma, Y.; Lowe, C.; Zweiffel, Y.; Hilborn, J.G. and Marison, I. (2000) Alginate hydrogel microspheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioeng. 67: 616–622.

    Google Scholar 

  31. Ogbonna, J.C.; Matsumura, M.; Yamagata, T.; Sakuma, H. and Kataoka, H. (1989) Production of micro-gel beads by a rotating disk atomizer. J. Ferment. Bioeng. 68: 40–48.

    Google Scholar 

  32. Prusse, U.; Bruske, F.; Breford, J. and Vorlop, K.D. (1998) Improvement of the jet cutting method for the preparation of spherical particles from viscous polymer solutions. Chem. Eng. Technol. 21: 153–157.

    Google Scholar 

  33. Prusse, U.; Fox, B.; Kirchhoff, M.; Bruske, F.; Breford, J and Vorlop, K.-D. (1998) New Process (jet cutting method) for the production of spherical beads from highly viscous polymer solutions. Chem. Eng. Technol. 21: 29–33.

    Google Scholar 

  34. Bugarski, B.; Li, Q.L.; Goosen, M.F.A.; Poncelet, D.; Neufeld, R.J. and Vunjak, G. (1994) Electrostatic droplet generation-mechanism of polymer droplet formation. AICHE J. 40: 1026–1031.

    Article  Google Scholar 

  35. Halle, J.P.; Leblond, F.A.; Pariseau, J.F.; Jutras, P.; Brabant, M.J. and Lepage, Y. (1994) Studies on small (300 pm) microcapsules: II - Parameters governing the production of algiante beads by high voltage electrostatic pulses. Cell Transplantation 3: 365–372.

    Google Scholar 

  36. Poncelet, D.; Bugarski, B.; Amsden, B.; Zhu, J.; Neufeld, R.J. and Goosen, M.F.A. (1994) A parallel plate electrostatic droplet generator-parameters affecting microbead size. Appl. Microbiol. Biotechnol. 42: 251–255.

    Google Scholar 

  37. Hulst, A.C.; Tramper, J.; Vantriet, K. and Westerbeek, J.M.M. (1985), A new technique for the Production of Immobilized Biocatalyst in Large Quantities, Biotechnol. Bioeng. 27: 870–876.

    Google Scholar 

  38. Lord Rayleigh (1878) On the stability of jets. Proc. London Math. Soc. 10: 4–13.

    Google Scholar 

  39. Serp, D.; Catana, E.; Heinzen, C.; von Stockar, U. and Marison, I.W. (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioeng. 70: 41–53.

    Google Scholar 

  40. Gugerli, R.; Catana, E.; Heinzen, C.; von Stockar, U. and Marison, I.W. (2002) Quantitative study of the production and properties of alginate/poly-L-lysine microcapsules. J. Microencap. 19: 571–590.

    Article  CAS  Google Scholar 

  41. Brandenberger, H. (1999) Monodisperse particle production: a method to prevent drop coalescence using electrostatic forces. Journal of electrostatics 45: 227–238.

    Article  CAS  Google Scholar 

  42. Serp, D.; von Stockar, U. and Marison, I.W. (2002) Immobilized bacterial spores for use as bioindicators in the validation of thermal sterilization processes. J. Food Protect. 65: 1134–1141.

    CAS  Google Scholar 

  43. Stark, D.; Kornmann, H.; Münch, T.; Sonnleitner, B.; Marison, LW. and von Stockar, U. (2002) A novel type of in situ extraction: The use of solvent containing microcapsules for the bioconversion of 2phenylethanol from L-phenylalanine by Saccharomyces cerevisiae Biotechnol. Bioeng. (in press).

    Google Scholar 

  44. Ahmed, A.; Bonner, C. and Desai, T.A. (2002) Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J. Control. Rel. 81: 291–306.

    Google Scholar 

  45. Walde, P. and Ichikawa, S. (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng. 18: 143–177.

    Google Scholar 

  46. Arshady, R. (1989) Preparation of nano-and microspheres by polycondensation techniques. J. Microencap. 6: 1–12.

    Article  CAS  Google Scholar 

  47. Nigam, S.C.; Tsao, 1.F.; Sakoda, A. and Wang, H.Y. (1988) Techniques for preparing hydrogel membrane capsules. Biotechnol. Tech. 2: 271–276.

    Google Scholar 

  48. Jen, A.C.; Wake, M.C. and Mikos, A.G. (1996) Review: Hydrogels for cell immobilization. Biotechnol. Bioeng. 50: 357–364.

    Google Scholar 

  49. Sefton, M.; Dawson, R. and Broughton, R. (1987) Microencapsulation of mammalian cells in a water-insoluble polyacrylate by coextrusion and interfacial precipitation. Biotechnol. Bioeng. 29: 1135–1143.

    Google Scholar 

  50. Goosen, M.F.A.; O’Shea, G.M.; Gharapetian, H.M.; Shou, S. and Sun, A.M. (1985) Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas. Biotechnol. Bioeng. 27: 146–150.

    Google Scholar 

  51. King, G.; Daugulis, A. and Faulkner P. (1987) Alginate-polylysine microcapsules of controlled membrane molecular weight cut-off for mammalian cell culture engineering. Biotechnol. Prog. 3: 231–241.

    Google Scholar 

  52. Thu, B.; Bruheim, P.T.E.; Soon-Shiong, P.; Smidsrod, O. and Skjakk-Bræk, G. (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17: 1031–1040.

    Google Scholar 

  53. Lacik, I.; Brissova, M.; Anilkumar, A.; Powers, A. and Wang, T. (1996) New capsule with tailored properties for the encapsulation of living cells. J. Biomed. Mat. Res. 39: 52–60.

    Google Scholar 

  54. Ma, X.J.; Vacek, I. and Sun, A. (1994) Generation of alginate-poly-L-lysine-alginate (APA) biomicrocapsules - The relationship between the membrane strength and the reaction conditions. Art. Cells Blood Substit. Immob. Biotechnol. 22: 43–69.

    Google Scholar 

  55. Bartkowiak, A. and Hunkeler, D. (1999) Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions. Chem. Mater. 11: 2486–2492.

    Google Scholar 

  56. Poncelet, D. and Neufeld, R.T. (1989) Shear breakage of nylon membrane microcapsules in a turbine reactor. Biotechnol. Bioeng. 33: 95–103.

    Google Scholar 

  57. Lu, G.Z.; Thompson, F.G. and Gray, M.R. (1992) Physical modelling of animal cell damage by hydrodynamic forces in suspension cultures. Biotechnol. Bioeng. 40: 1277–1281.

    Google Scholar 

  58. Dos Santos, V.; Vasilevaka, T. and Kajuk, B. (1997) Production and characterisation of double layer beads for co-immobilization of microbial cells. Biotechnol. Ann. Rev. 3: 227–244.

    Google Scholar 

  59. Chen, Z.; Bao, Y. and Gorczyca, W. (1995) Study of microencapsulation for pituitary transplantation: Capsule preparation and in vitro study. Artif. Cells Blood Substit. Immob. Biotechnol. 23: 597–604.

    Google Scholar 

  60. Peirone, M.; Ross, C.; Hortelano, G.; Brash, J. and Chang, P. (1988) Encapsulation of various recombinant mammalian cell types in different alginate microcapsules. J. Biomed. Mat. Res. 42: 587–596.

    Google Scholar 

  61. Jay, A.W.L. and Edwards, M.A. (1968) Mechanical properties of semi-permeable microcapsules. Can. J. Physiol. Pharm. 46: 731–737.

    Google Scholar 

  62. Schoichet, M.; Li, R. and White, M. (1995) Stability of hydrogels used in cell encapsulation: an in vitro comparison of alginate and agarose. Biotechnol. Bioeng. 50: 374–381.

    Google Scholar 

  63. Martinsen, A.; Skjâk-Bræk, G. and Smidsrod, 0 (1989) Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33: 79–89.

    Google Scholar 

  64. Chen, R. and Tsaih, M. (1997) Effect of preparation method and characteristics of chitosan on the mechanical and release properties of the prepared capsule. J. App1. Polymer Sci. 66: 161–169.

    Article  CAS  Google Scholar 

  65. Zhang, Z.; Saunders, R. and Thomas, C.R. (1999) Mechanical strength of single microcapsules determined by a novel micromanipulation technique. J. Microencap. 16: 117–124.

    Article  CAS  Google Scholar 

  66. Andrei, D.; Briscoe, B. and Williams, D. (1996) The deformation of microscopic gel particles. J. Chim. Phys. 93: 960–976.

    Google Scholar 

  67. Liu, K.K.; Williams, D R and Briscoe, B.J. (1996) Compressive deformation of a single microcapsule. Phys. Rev. 54: 6673–6680.

    Google Scholar 

  68. Posillico, E.G. (1986) Microencapsulation technology for large-scale antibody production. Biotechnology 4: 114–117.

    Article  CAS  Google Scholar 

  69. Duffy, S.J.B. and Murray, W.D. (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Biores. Technol. 55: 1–33.

    Google Scholar 

  70. Lévy, M.-C. and Edwards-Lévy, F. (1999). Serum albumin-alginate coated beads: mechanical properties and stability. Biomaterials 20: 2069–2084.

    Article  Google Scholar 

  71. Gugerli, R. (2003) Polyelectrolyte- complex and covalent-complex microcapsules for encapsulation of mammalian cells: potential and limitations. PhD Thesis, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marison, I., Peters, A., Heinzen, C. (2004). Liquid Core Caspules for Applications in Biotechnology. In: Nedović, V., Willaert, R. (eds) Fundamentals of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8A. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1638-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1638-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6534-6

  • Online ISBN: 978-94-017-1638-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics