Skip to main content

Productivity of Gephyrocapsacean Algae Revealed from Long-Chain Alkenones and Alkyl Alkenoates in the Northwestern Pacific off Japan

  • Chapter
Dynamics and Characterization of Marine Organic Matter

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

  • 341 Accesses

Abstract

Long-chain (n C37–C39) alkenones and (n C37–C38) alkyl alkenoates (A&A), which are derived mainly from coccolithophorids specifically, the family Gephyrocapsaceae such as Emiliania huxleyi and Gephyrocapsa oceanica, were analyzed in, 1) sinking particles collected by year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, 2) in the underlying bottom sediment at 9200 m depth and 3) in a sediment core of KT92-17 St. 14 (3252 m water depth) from in the northwestern Pacific off Japan. Pronounced maxima of sinking A&A fluxes in sediment trap samples at 1674 m were observed in late spring to summer. Seasonal patterns of alkenone temperature records in sediment trap samples from 1674 to 8688 m were similar to sea surface temperature (SST) signals with a time delay of one half to two months. Thus, A&A in the particles sinking in deep sea water column could be mainly derived from the primary products of surface layer and reflected strongly the state of productivity of their source organisms. Furthermore, significant amounts of A&A were contained in the underlying bottom sediment, in which no coccoliths were observed. However, A&A fluxes tended to decrease with water depths due to decomposition of these compounds in the water column and sediment-water interface. A & A and coccolith records at 1674 m suggested that A&A fluxes were not always correlated with the coccolith fluxes of E. huxleyi and G. oceanica. The relative abundances of E. huxleyi and G. oceanica estimated by A&A fingerprints were not necessarily comparable to the estimated values from coccolith observations.

Paleo-productivity estimations of the Gephyrocapsaceae based on A&A mass accumulation rates for a core St. 14 were generally higher during the last glacial period than the Holocene. This result disagrees with previous studies on coccolith carbonates in the middle to high latitudinal North Atlantic sediments, in which coccolithophorid productions increased from the last glacial period to the Holocene. The millenarian-scale fluctuation in productivity of coccolithophorids including the Gephyrocapsaceae in the northwestern Pacific off central Japan was presumably different from that in the middle to high-latitudinal areas of the North Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balch, W. M., Holligan, P. M., Ackleson, S. G. and Voss, K. J. (1991): Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol. Oceanogr., 36, 629–643.

    Article  Google Scholar 

  • Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. (1993): 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon, 35, 191–199.

    Google Scholar 

  • Bard, E. (1988): Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanogr., 3, 635–645.

    Article  Google Scholar 

  • Bell, M. V. and Pond, D. (1996): Lipid composition during growth of motile and coccolith forms of Emiliania huxleyi. Phytochemistry, 41, 465–471.

    Article  Google Scholar 

  • Blackburn S. 1. and Cresswell G. (1993): A coccolithophorid Bloom in Jervis Bay, Australia. Aust. J. Mar. Freshwater Res., 44, 253–260.

    Article  Google Scholar 

  • Brassell S. C., Eglinton G., Marlowe 1. T., Pflaumann U., and Sarnthein M. (1986): Molecular stratigraphy: a new tool for climatic assessment. Nature, 320, 129–133.

    Google Scholar 

  • Broecker, W. S. and Denton, G. H. (1980): The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta., 53, 2465–2501.

    Article  Google Scholar 

  • Chinzei, K., Fujioka, K., Kitazato, H., Koizumi, I., Oba, T., Oda, M., Okada, H., Sakai, T. and Tanimura, Y. (1987): Postglacial environmental change of the Pacific Ocean off the coasts of central Japan, Mar. Micropaleontol., 11, 273–291.

    Article  Google Scholar 

  • CLIMAP project members (1976): The surface of the ice-age earth. Science, 191, 1131–1137.

    Article  Google Scholar 

  • Conte M. H., Thompson A. and Eglinton G. (1995): Lipid biomarkerdiversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and related species Gephyrocapsa oceanica. J. Phycol., 31, 272–282.

    Article  Google Scholar 

  • Conte M. H., Eglinton G., and Madureira L. A. (1992): Long-chain alkenones and alkyl alkenoates as paleotemperature indicators: Their production, flux and early diagenesis in the eastern North Atlantic. Org. Geochem., 19, 287–298.

    Article  Google Scholar 

  • Crip, T. P., Brenner, S., Venkatesan, M. I., Ruth, E. and Kaplan, I. R. (1979): Organic chemical characterization of sediment trap particles from San Nicholas, Santa Barbara, Santa Monica, and San Pedro Basins, California. Geochim. Cosmochim. Acta., 43, 1791–1801.

    Article  Google Scholar 

  • Dymond, J. and Lyle, M. (1984): Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene. Limnol. Oceanogr., 30, 699–712.

    Article  Google Scholar 

  • Fairbanks, R. G., and Wiebe, P. H. (1980): Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession and paleoceanographic significance. Science, 209, 1524 1526.

    Google Scholar 

  • Gagosian, R. B., Smith, S. O. and Nigrelli, G. E. (1982) Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochim. Cosmochim. Acta., 46, 1163–1172.

    Article  Google Scholar 

  • Holligan, P. M., Fernandez, E., Aiken, J. A., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B., Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C., Turner, S. M. and van der Wal, P. (1993): A biogeochemical study of the coccolithophore Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycle., 7, 879–900.

    Article  Google Scholar 

  • Holligan, P. M. (1992): Do marine phytoplankton influence global climate? In: Falkowski, P. G. and Woodhead, A. D. (Editors), Primary productivity and biogeochemical cycle in the sea, Plenum Press, New York, pp. 487–501.

    Google Scholar 

  • Honjo, S (1976): Coccoliths: Production, transportation and sedimentation. Mar. Micropaleontol., 1, 65–79.

    Article  Google Scholar 

  • Houghton S. D. and Guptha M. V. S. (1991): Monsoonal and fertility controls on recent marginal sea and continental shelf coccolith assemblages from the western Pacific and northern Indian oceans. Mar. Geol., 97, 251–259.

    Article  Google Scholar 

  • Huang, C.-Y., Liew, P.-M., Zhao, M., Chang, T.-C., Kuo, C.-M., Chen, M.-T., Wang, C.-H. and Zheng, L.-F. (1997): Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years. Earth Planet. Sci. Lett., 146, 59–72.

    Article  Google Scholar 

  • Kennedy, J. A. and Brassell, S. C. (1992): Molecular stratigraphy of the Santa Barbara basin: comparison with historical records of annual climate change. Org. Geochem., 19, 235–244.

    Article  Google Scholar 

  • Kennett, J. P. and Ingram, B. L., (1995): A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature, 377, 510–514.

    Article  Google Scholar 

  • Kitagawa, H., Masuzawa, T., Matsumoto, E., Yamaguchi, K. and Nakamura, T. (1991) A preparation method of graphite target by reduction of CO2 with H2 for AMS 14C measurement. In Summaries of Research UsinfAMS 14 C Nagoya University (II). (Edited by Dating and Materials Research Center Nagoya University). pp. 113–121 (in Japanese).

    Google Scholar 

  • Klaveness, D. (1972): Coccolithus huxleyi (Lohm.) Kamptn. II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. Br. Phycol. J., 7, 309–318.

    Article  Google Scholar 

  • Knappertsbusch, M. and Brummer, G. J. A. (1995): A sediment trap investigation of sinking coccolithophorids in the North Atlantic. Deep-Sea Res., 42, 1083–1109.

    Article  Google Scholar 

  • Madureira, L. A. S., Conte, M. H. and Eglinton, G. (1995): Early diagenesis of lipid biomarker compounds in North Atlantic sediments. Paleoceanogr., 10, 627–642.

    Article  Google Scholar 

  • Marlowe I. T., Brassel S. C., Eglinton G. and Green J. C. (1990): long-chain alkenones and alkyl alkenoates and fossil coccolith record of marine sediments. Chem. Geol., 88, 349–375.

    Google Scholar 

  • Marlowe I. T., Green J. C., Neal A. C., Brassell S.C., Eglinton G. and Course P. A (1984): long chain (n—C37—C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and taxonomic significance. Br. Phycol. J., 19, 203–216.

    Google Scholar 

  • Martinez, PH., Bertrand, PH., Bouloubassi, I., Bareille, G., Shimmield, D., Vautravers, B., Grousset, F., Guichard, S., Ternois, Y. and Sicre, M.-A. (1996): An integrated view of inorganic biogeochemical indicators of palaeoproductivity changes in a coastal upwelling area. Org. Geochem., 24, 411–420.

    Article  Google Scholar 

  • Matsueda, H. and Handa, N. (1986): Vertical flux of hydrocarbons as measured in sediment traps in the eastern North Pacific Ocean. Mar. Chem., 20, 179–195.

    Article  Google Scholar 

  • McCafferey, M. A., Farrington, J. W. and Repeta, D. J. (1990): The organic geochemistry of Peru margin surface sediments: I. A comparison of the C37 alkenone and historical El Nino records. Geochim. Cosmochim. Acta., 54, 1671–1682.

    Article  Google Scholar 

  • McIntyre, A., Ruddiman, W. F. and Jantzen, R. (1972): Southward penetrations of the North Atlantic polar front: Faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years, Deep-Sea Res., 19, 61–77.

    Google Scholar 

  • McIntyre A. and McIntyre R. (1970): Coccolith concentrations and differential solution in oceanic sediments. In Micropaleontology of the Oceans (Edited by Funnel(B. H. and Riedel W. R.). pp. 253–261, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • McIntyre A. and Be A. W. H. (1967): Modern coccolithpphores of the Atlantic Oceans-1. Placolith and cyrtoliths. Deep-Sea Res., 14, 561–597.

    Google Scholar 

  • Murayama, M., Ahagon, N., Hyong, S., Kanamatsu, T. and Taira, A. (1994): Lithology in sediment cores collected during the cruises of KT92–17 and KT93–7 (IGBP). Kaiyou Monthly, 26, 434–439 (in Japanese).

    Google Scholar 

  • Murayama, M., Matsumoto, E., Nakamura, T., Okamura, M., Yasuda, H. and Taira, A. (1993): Reexamination of the eruption age of Aira-Tn Ash (AT) obtained from a piston core off Shikoku-determined by AMS 14C dating of planktonic foraminifera. J. Geol. Soc. Japan (Chishitsugaku Zasshi), 99, 787–798 (in Japanese with English abstract).

    Google Scholar 

  • Nakamura, T. and Nakai, N. (1988): Fundamentals of radiocarbon datings with accelarator mass spectrometry. Mem. Geol. Soc. Japan, 29, 83–106.

    Article  Google Scholar 

  • Nakatsuka, T., Handa, N. and Imaizumi, S. (1995): Spatial and temporal variation of dl5N in sinking particles in deep waters: Its implication for the origin and transport of particulate organic matter: In: Sakai, H. and Nozaki, Y. (Editors), Biogeochemical processes and ocean flux in the western Pacific, Terra Scientific Publishing Company, Tokyo, pp. 355–374.

    Google Scholar 

  • Oba, T. and Yasuda, H. (1992): Paleoenvironmental change of the Kuroshio region since the last glacial age (in Japanese with English abstract). The Quarternary Research (Daiyonki Kenkyu), 31, 329–339 (in Japanese with English abstract).

    Google Scholar 

  • Ohkouchi, N., Kawahata, H., Murayama, M., Okada, M., Nakamura, T. and Taira, A. (1994): Was deep water formed in the North Pacific during the late Quaternary? Cadmium evidence from the northwest Pacific. Earth Planet. Sci. Lett., 124, 185–194.

    Article  Google Scholar 

  • Okada H. (1992): Biogeographic control of modern nannofossil assemblages in surface sediments of Ise Bay, Mikawa Bay and Kumano-nada, off the coast of central Japan. Memorie Di Scienze Geologiche, 13, 431–449.

    Google Scholar 

  • Okada and McIntyre (1979): Seasonal distribution of modern coccolithophores in the western North Atlantic Ocean. Mar. Biol., 54, 319–328.

    Article  Google Scholar 

  • Okada H. and Honjo S. (1973): The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Res., 20, 355–374.

    Google Scholar 

  • Pace, M. L., Knauer, G. A., Karl, D. M. and Martine, J. H. (1987): Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 325, 803–805.

    Article  Google Scholar 

  • Prahl F. G., Collier R. B., Dymond J., Lyle M. and Sparrow M. A. (1993): A biomarker perspective on prymnesiophyte productivity in the northeast Pacific Ocean. Deep-Sea Res., 40, 2061–2076.

    Article  Google Scholar 

  • Prahl, F. G., Muehlhausen, L. A. and Lyle, M. (1989a): An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years. Paleoceanogr., 4, 495–510.

    Article  Google Scholar 

  • Prahl, F. G., de Lange, G. J., Lyle, M. and Sparrow, M. A. (1989b): Post-depositional stability of long-chain alkenones under contrasting redox conditions. Nature, 341, 434–437.

    Article  Google Scholar 

  • Prahl F. G., Muehlhausen L. A. and Zahnle D. L. (1988): Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta., 52, 2303–2310.

    Article  Google Scholar 

  • Prahl F. G. and Wakeham S. G. (1987): Calibration unsaturation patterns in long-chain ketone composition for paleotemperature assessment. Nature, 330, 367–369.

    Article  Google Scholar 

  • Samtleben, C. and Bickert, T. (1990): Coccoliths in sediment traps from the Norwegian Sea. Mar. Micropaleontol. 16, 39–64.

    Article  Google Scholar 

  • Smith, K. L., Jr. and Baldwin, R. J. (1984): Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and eastern North Pacific. Nature, 307, 624–626.

    Article  Google Scholar 

  • Sawada, K. and Handa, N. (1998): Variability of the path of the Kuroshio oceanic current over the past 25,000 years. Nature, 392, 592–595.

    Article  Google Scholar 

  • Sawada, K., Handa, N., Shiraiwa, Y., Danbara, A. and Montani, S. (1996): Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North Pacific with special reference to the reconstruction of Emiliania huxleyi and Gephyrocapsa oceanica ratios. Org. Geochem., 24, 751–764.

    Article  Google Scholar 

  • Sawada, K. and Handa, N., Nakatsuka, T. (1998): Production and transport of long-chain alkenones and alkyl alkenoates in sea water column in the northwestern North Pacific off central Japan. Mar. Chem., 59, 219–234.

    Google Scholar 

  • Sawada, K., Handa, N., Shiraiwa, Y. and Danbara, A. (1995): An attempt at reconstructing prymnesiophyte assemblages revealed from sedimentary long-chain alkenones and alkyl alkenoates: An approach from laboratory cultures. Res. Org.Geochem., 10, 21–26 (in Japanese).

    Google Scholar 

  • Suess, E. (1980): Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288, 260–263.

    Article  Google Scholar 

  • Taylor, A. H., Watson, A. J., Ainsworth, M., Robertson, J. E. and Turner, D. R. (1990): A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic. Global Biogeochem. Cycles, 5, 151–171.

    Article  Google Scholar 

  • Tsunogai, S. and Noriki, S. (1991): Particulate fluxes of carbonate and organic carbon in the ocean, Is the marine biological activity working as a sinking of the atmospheric carbon? Tellus, 4313, 256 — 257.

    Google Scholar 

  • van Kreveld, S. A., Knappertsbusch, M., Ottens, J., Ganssen, G. M. and van Hinte, J. E. (1996): Biogenic carbonate and ice-rafted debris (Heinrich layer) accumulation in deep-sea sediments from a Northeast Atlantic piston core. Mar. Geol., 131, 21–46.

    Article  Google Scholar 

  • Volkman J. K., Barrett S. M., Blackburn S. I. and Sikes E. L. (1995): Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim. Cosmochim. Acta., 59, 513–520.

    Article  Google Scholar 

  • Volkman J. K., Eglinton G., Corner E. D. S. and Forsberg T. E. V. (1980): Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytocheinistry, 19, 2619–2622.

    Article  Google Scholar 

  • Wakeham, S. G. and Lee, C. (1993): Production, transport, and alteration of particulate organic matter in the marine water column. In Organic Geochemistry: Principles and Applications (Edited by Engel, M. H. and Macko, S. A. ). pp. 143–169, Plenum Press, New York.

    Google Scholar 

  • Wakeham, S. G. and Cannel, E. A. (1988): Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particle dynamics. J. Mar. Res., 46, 183–213.

    Article  Google Scholar 

  • Wakeham, S. G., Farrington, J. W., Gagosian, R. B., Lee, C., De Baar, H., Nigrelli, G. E., Tripp, B. W., Smith, S. O. and Frew, N. M. (1980): Fluxes of organic matter from a sediment trap experiment in the equatorial Atlantic Ocean. Nature, 286, 798–800.

    Article  Google Scholar 

  • Yang, S.-K., Nagata, Y., Taira, K. and Kawabe, M. (1993): Southward intrusion of the Intermediate Oyashio Water along the east coast of the Boso Peninsula, Japan II. Intrusion events into Sagami Bay. J. Oceanogr., 49, 173–191.

    Article  Google Scholar 

  • Young, J. R. and Westbroek, P. (1991): Genotypic variation in the coccolithophorid species Emiliania huxleyi. Mar. Micropaleontol., 18, 5–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sawada, K., Okada, H., Shiraiwa, Y., Handa, N. (2000). Productivity of Gephyrocapsacean Algae Revealed from Long-Chain Alkenones and Alkyl Alkenoates in the Northwestern Pacific off Japan. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics