Skip to main content

“Picopellets” Produced by Phagotrophic Nanoflagellates: Role in the Material Cycling within Marine Environments

  • Chapter
Dynamics and Characterization of Marine Organic Matter

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

Abstract

Recent studies have suggested that marine phagotrophic protists can release large numbers of small fecal pellets (<1 μm in linear size dimension). These “picopellets” may contribute substantially to the turnover of submicron and colloidal particles in the sea. This paper reviews recent studies that examined release of colloidal and dissolved organic matter by phatotrophic nanoflagellates, dominant grazers of picophytoplankton and bacteria in diverse marine environments. Difficulties in quantitative recovery of flagellate egesta have seriously restricted the analysis of the mass balance and stoichiometry of ingestion/egestion processes in flagellates, but available evidence suggests that a significant fraction of ingested prey materials is egested as colloidal and dissolved organic matter particularly when prey abundance is high. Biochemical characterization of picopellets has revealed that some of these particles have liposome-like structures, which may partly explain the formation of the semi-labile and refractory pool of dissolved organic matter in seawater. Future challenges include recovery, detection and characterization of picopellets from natural environments and evaluation of their roles in major biogeochemical fluxes including particle sinking, organic matter decomposition and nutrient regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aaronson, S. (1971): The synthesis of extracellular macromolecules and membranes by a population of the phytoflagellate Ochromonas danica. Limnol. Oceanogr., 16, 1–9.

    Article  Google Scholar 

  • Aaronson, S. (1973): Digestion in phytoflagellates. pp. 18–37. In Lysosomes in Biology and Pathology, ed. by J. T. Dingle, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Alldredge, A. L., U. Passow and B. E. Logan (1993): The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res., 6, 1131–1140.

    Google Scholar 

  • Andersen, O. K., J. C. Goldman, D. A. Caron and M. R. Dennett (1986): Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar. Ecol. Prog. Ser., 31, 47–55.

    Article  Google Scholar 

  • Anderssen, A., C. Lee, F. Azam and A. Hagstrom (1985): Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Mar. Ecol. Prog. Ser., 23, 99–106.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad (1983): The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263.

    Article  Google Scholar 

  • Azam, F., D. C. Smith, G. F. Steward and A. Hagstrom (1994): Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol., 28, 167–179.

    Article  Google Scholar 

  • Barbeau, K., J. W. Moffett, D. A. Caron, P. L. Croot and D. L. Erdner (1996): Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature, 380, 61–64.

    Article  Google Scholar 

  • Bauer, J. E., P. M. Williams and E. R. M. Druffel (1992): 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature, 357, 667–670.

    Google Scholar 

  • Baskaran, M., P H. Santschi, G. Benoir and B. D. Honeyman (1992): Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico. Geochim. Cosmochim. Acta., 56, 3375–3388.

    Article  Google Scholar 

  • Benner, R., J. D. Pakulski, M. Macarthy, J. T. Hedges and P. G. Hatcher (1992): Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255, 1561–1564.

    Article  Google Scholar 

  • Buck, K. R. and J. Newton (1995): Fecal pellet flux in Dabob Bay during a diatom bloom: Contribution of microzooplankton. Limnol. Oceanogr., 40, 306–315.

    Article  Google Scholar 

  • Carlson, C. A. and H. W. Ducklow (1995): Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep-Sea Res., 42, 639–656.

    Article  Google Scholar 

  • Carlson, C. A., H. W. Ducklow and A. F. Michaels (1994): Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371, 405–408.

    Article  Google Scholar 

  • Caron, D. A. (1991): Evolving role of protozoa in aquatic nutrient cycles. pp. 387–415. In Protozoa and Their Role in Marine Processes, NATO ASI series, Vol. G25, ed. by P. C. Reid, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Caron, D. A. and J. C. Goldman (1990): Protozoan nutrient regeneration. pp. 283–306. In Ecology of Marine Protozoa, ed. by G. M. Capriulo, Oxford University Press, NewYork.

    Google Scholar 

  • Caron, D. A. and J. C. Goldman (1993): Predicting excretion rates of protozoa: Reply to the comment by Landry. Limnol. Oceanogr., 38, 472–474.

    Article  Google Scholar 

  • Caron, D. A., J. C. Goldman, O. K. Andersen and M. R. Dennett (1985): Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser., 24, 243–254.

    Article  Google Scholar 

  • Caron, D. A., J. C. Goldman and M. R. Dennett (1990a): Carbon utilization by the omnivorous flagellate Paraphysomonas imperforata. Limnol. Oceanogr., 35, 192–201.

    Article  Google Scholar 

  • Caron, D. A., K. G. Porter and R. W. Sanders (1990b): Carbon, nitrogen and phosphorus budgets for the mixotrophic phytoflagellate Poterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol. Oceanogr., 35, 433–443.

    Article  Google Scholar 

  • Cole, G. T. and M. J. Wynne (1974): Endocytosis of Microcyctis aeruginosa by Ochromonas danica. J. Phycol., 10, 397–410.

    Google Scholar 

  • Cole, J. J., S. Findlay and M. L. Pace (1988): Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43, 1–10.

    Article  Google Scholar 

  • Choi, J. W. and D. K. Stoecker (1989): Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbial., 55, 1761–1765.

    Google Scholar 

  • Dubowsky, N. (1974): Selectivity of ingestion and digestion in the chrysomonad flagellate Ochromonas malhamensis. J. Protozool., 21, 295–298.

    Google Scholar 

  • Ducklow, H. W. and C. A. Carlson (1992): Oceanic bacterial production. Adv. Microb. Ecol., 12, 113–181.

    Article  Google Scholar 

  • Ducklow, H. W., D. A. Purdie, P. J. le B. Williams and J. M. Davies (1986): Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science, 232, 865–867.

    Article  Google Scholar 

  • Fenchel, T. (1982a): Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. Prog. Ser., 8, 211–223.

    Article  Google Scholar 

  • Fenchel, T. (1982b): Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser., 8, 225–231.

    Article  Google Scholar 

  • Fenchel, T. (1986): The ecology of heterotrophic microflagellates. Adv. Microb. Ecol., 9, 57–97. Fenchel, T. (1987): Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Ferrier-Pagès, C. and F. Rassoulzadegan (1994): N remineralization in planktonic protozoa. Limnol. Oceanogr., 39, 411–419.

    Article  Google Scholar 

  • Flood, P. R., D. Deibel and C. C. Morris (1992): Filtration of colloidal melanin from sea water by planktonic tunicates. Nature, 355, 630–632.

    Article  Google Scholar 

  • Francois, R. (1990): Marine sedimentary humic substances: Structure, genesis and properties. Rev. Aqual. Sci., 3, 41–80.

    Google Scholar 

  • Gaines, G. and F. J. R. Taylor (1984): Extracellular digestion in marine dinoflagellates. J. Plankton Res., 6, 1057–1061.

    Article  Google Scholar 

  • Gaudy, R. (1974): Feeding four species of pelagic copepods under experimental conditions. Mar. Biol., 25, 125–141.

    Article  Google Scholar 

  • Geider, R. J. and B. S. C. Leadbeater (1988): Kinetics and energetics of growth of the marine choanoflagellate Stephanoeca diplocostata. Mar. Ecol. Prog. Ser., 47, 169–177.

    Article  Google Scholar 

  • Goldman, J. C., D. A. Caron, O. K. Andersen and M. R. Dennett (1985): Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser., 24, 231–242.

    Article  Google Scholar 

  • Gowing, M. M. and M. W. Silver (1985): Minipellets: A new and abundant size class of marine fecal pellets. J. Mar. Res., 43, 395–418.

    Article  Google Scholar 

  • Haga, H., T. Nagata and M. Sakamoto (1995): Size-fractionated NH4+ regeneration in the pelagic environments of two mesotrophic lakes. Limnol. Oceanogr., 40, 1091–1099.

    Article  Google Scholar 

  • Handa, N. (1991): Chemical studies on organic matter and carbon cycle in the ocean—Lecture by the member awarded the Oceanographic Society of Japan Prize for 1990. J. Oceanogr. Soc. Japan, 47, 49–61 (in Japanese).

    Article  Google Scholar 

  • Harrison, W. G. (1992): Regeneration of nutrients. pp. 385–407. In Primary Productivity and Biogeochemical Cycles in the Sea, ed. by P. G. Falkowski and A. D. Woodhead, Plenum, New York.

    Google Scholar 

  • Hedges, J. T. (1988): Polymerization of humic substances in natural environments. pp. 45–58. In Humic Substances and Their Role in the Environment, ed. by F. H. Frimmel and R. F. Christman, John Wiley and Sons Limited, NewYork.

    Google Scholar 

  • Hoch, M. P., R. A. Snyder, L. A. Cifuentes and R. B. Coffin (1996): Stable isotope dynamics of nitrogen recycled during interactions among marine bacteria and protists. Mar. Ecol. Prog. Ser., 132, 229–239.

    Article  Google Scholar 

  • Honjo, S. and M. R. Roman (1977): Marine copepod fecal pellets: production, preservation and sedimentation. J. Mar. Res., 36, 45–57.

    Google Scholar 

  • Jumars, P. A., D. L. Penry, J. A. Baross, M. J. Perry and B. W. Frost (1989): Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals. Deep-Sea Res., 36, 483–495.

    Article  Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1993): Dissolved combined amino acids: chemical form and utilization by marine bacteria. Limnol. Oceanogr., 38, 1256–1270.

    Article  Google Scholar 

  • Keil, R. G. and D. L. Kirchman (1994): Abiotic transformation of labile protein to refractory protein in seawater. Mar. Chem., 45, 187–196.

    Article  Google Scholar 

  • Kepkay, P. E. (1994): Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser., 109, 293–304.

    Article  Google Scholar 

  • Kirchman, D. L. (1994): The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol., 28, 255–271.

    Article  Google Scholar 

  • Koike, I., S. Hara, K. Terauchi and K. Kogure (1990): The role of submicrometer particles in the ocean. Nature, 345, 242–244.

    Article  Google Scholar 

  • Kogure, K. and I. Koike (1987): Particle counter determination of bacterial biomass in seawater. Appl. Environ. Microbiol., 53, 274–277.

    Google Scholar 

  • Kopylov, A. I., T. I. Mamayeva and S. F. Batsanin (1980): Energy balance of the colorless flagellate Parabodo attenuatus (Zoomastigophora, Protozoa). Oceanology, 20, 705–708.

    Google Scholar 

  • Landry, M. R. (1993): Predicting excretion rates of microzooplankton from carbon metabolism and elemental ratios. Limnol. Oceanogr., 38, 468–472.

    Article  Google Scholar 

  • Lee, C. and S. G. Wakeham (1992): Organic matter in the water column: future research challenges. Mar. Chem., 39, 95–118.

    Article  Google Scholar 

  • Longhurst, A. R. (1991): Role of the marine biosphere in the global carbon cycle. Limnol. Oceanogr., 36, 1507–1526.

    Article  Google Scholar 

  • Longhurst, A. R., I. Koike, W. K. W. Li, J. Rodriguez, P. Dickie, P. Kepkay, F. Partensky, B. Bautista, J. Ruiz, M. Wells and D. Bird (1992): Sub-micron particles in northernwest Atlantic shelf water. Deep-Sea Res., 39, 1–7.

    Article  Google Scholar 

  • Maruyama, A., M. Oda and T. Higashihara (1993): Abundance of virus-sized non-DNase-digestible DNA (coated DNA) in eutrophic seawater. Appl. Environ. Microbiol., 59, 712–717.

    Google Scholar 

  • Matsueda, N., N. Handa, I. Inoue and H. Takano (1986): Ecological significance of salp fecal pellets collected by sediment traps in the eastern north Pacific. Mar. Biol., 91, 421–431.

    Article  Google Scholar 

  • Moran, S. B. and K. O. Buesseler (1992): Short residence time of colloids in the upper ocean estimated from 238U–234Th disequilibria. Nature, 359, 221–223.

    Article  Google Scholar 

  • Nagata,T.,R. Fukuda, I. Koike, K.Kogure and D.L. Kirchman(1998) Degradation by bacteria of membrane and soluble protein in seawater. Aquat. Microb. Ecol., 14, 29–37.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1990): Filtration-induced release of dissolved free amino acids: Application to cultures of marine protozoa. Mar. Ecol. Prog. Ser., 68, 1–5.

    Article  Google Scholar 

  • Nagata, T. and D. L. Kirchman (1991): Release of dissolved free and combined amino acids by bacterivorous marine flagellates. Limnol. Oceanogr., 36, 433–443.

    Article  Google Scholar 

  • Nagata, T. and D. L. Kirchman (1992a): Release of dissolved organic matter by heterotrophic protozoa: implications for microbial food webs. Arch. Hydrobiol. Beih. Ergebn. Limnol., 35, 99–109.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (19926): Release of macromolecular organic complexes by heterotrophic marine flagellates. Mar. Ecol. Prog. Ser., 83, 233–240.

    Google Scholar 

  • Nagata, T. and D. L. Kirchman (1996): Bacterial degradation of protein adsorbed to model submicron particles in seawater. Mar. Ecol. Prog. Ser., 132, 241–248.

    Article  Google Scholar 

  • Nagata, T. and D. L. Kirchman (1997): Roles of submicron particles and colloids in microbial food webs and biogeochemical cycles within marine environments. Adv. Microb. Ecol. 15, 81–103.

    Google Scholar 

  • Nagata, T. and I. Koike (1995): Marine colloids: Their roles in food webs and biogeochemical fluxes. pp. 275–292. In Biogeochemical Processes and Ocean Flux in the Western Pacific, ed. by H. Sakai and Y. Nozaki, Terra Scientific Pub. Co., Tokyo.

    Google Scholar 

  • Nagata, T. and Y. Watanabe (1990): Carbon-and nitrogen-to-volume ratios of bacterioplankton grown under different nutritional conditions. Appl. Environ. Microbiol., 56, 1303–1309.

    Google Scholar 

  • Nothig, E.-M. and B. von Bodunge (1989): Occurrence and vertical flux of faecal pellets of probably protozoan origin in the southeastern Weddell Sea (Antarctica). Mar. Ecol. Prog. Ser., 56, 281289.

    Google Scholar 

  • Ogawa, H. and N. Ogura (1992): Comparison of two methods for measuring dissolved organic carbon in the sea water. Nature, 356, 696–698.

    Article  Google Scholar 

  • Passow, U., A. L. Alldredge and B. E. Logan (1994): The role of particulate carbohydrate exudates in flocculation of diatom blooms. Deep-Sea Res., 41, 335–357.

    Article  Google Scholar 

  • Peltzer, E. T. and N. A. Hayward (1996): Spatial and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992. Deep-Sea Res. 43: 1155–1180.

    Article  Google Scholar 

  • Pomeroy, L. R. (1974): The ocean’s food web, a changing paradigm. BioScience, 24, 499–504.

    Google Scholar 

  • Penry, D. L. and P. A. Jumars (1986): Chemical reactor analysis and optimal digestion. BioScience, 36, 310–315.

    Google Scholar 

  • Porter, K. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.

    Article  Google Scholar 

  • Rees, T. F. (1991): Transport of contaminants by colloid-mediated processes. pp. 25–44. In The Handbook of Environmental Chemistry, Vol. 2F, ed. by F. O. Hutzinger, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Sanders, R.W., D. A. Caron and U.-G. Berninger (1992): Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser., 86, 1–14.

    Article  Google Scholar 

  • Sherr, B. F., E. B. Sherr and T. Berman (1983): Grazing, growth, and ammonium excretion by a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol., 45, 1196–1201.

    Google Scholar 

  • Sherr, E. B. (1988): Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature, 335, 348–351.

    Article  Google Scholar 

  • Sherr, E. B., B. F. Sherr and L. J. Albright (1987a): Bacteria: Link or sink? Science, 235, 88–87.

    Google Scholar 

  • Sherr, E. G., B. F. Sherr and R. D. Fallon (1987b): Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol., 53, 958–965.

    Google Scholar 

  • Shrader, H. J. (1971): Fecal pellets: Role in sedimentation of pelagic diatoms. Science, 174, 55–57.

    Article  Google Scholar 

  • Stoecker, D. K. (1984): Particle production by planktonic ciliates. Limnol. Oceanogr., 29, 930–940.

    Article  Google Scholar 

  • Tranvik, L. J. (1994): Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy. Appl. Environ. Microbiol., 60, 1884–1888.

    Google Scholar 

  • Tranvik, L. J., E. B. Sherr and B. F. Sherr (1993): Uptake and utilization of “colloidal” DOM by

    Google Scholar 

  • heterotrophic flagellates in seawater. Mar. Ecol. Prog. Ser.,92 301–309.

    Google Scholar 

  • Turk, V., A.-S. Rehnstam, E. Lundberg and A. Hagstrom (1992): Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Appl. Environ. Microbiol., 58, 3744–3750.

    Google Scholar 

  • Twiss, M. R. and P. G. C. Campbell (1995): Regeneration of trace metals from picoplankton by nanoflagellate grazing. Limnol. Oceanogr., 40, 1418–1429.

    Article  Google Scholar 

  • Wells, M. L. and E. D. Goldberg (1993): Colloid aggregation in seawater. Mar. Chem., 41, 353–358.

    Article  Google Scholar 

  • Wells, M. L. and E. D. Goldberg (1994): The distribution of colloids in the North Atlantic and Southern Ocean. Limnol. Oceanogr., 39, 286–302.

    Article  Google Scholar 

  • Willams, P. J. leB (1981): Incorporation of microheterotrophic processes in the classical paradigm of the planktonic food web. Kieler Meeresforsh. 5, 1–28.

    Google Scholar 

  • Williams, P. J. leB (1995): Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and consequential effect on net C/N assimilation ratios. Mar. Chem., 51, 17–29.

    Article  Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1987): Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330, 246–248.

    Article  Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1988): Dissolved organic matter in the ocean: comments on a controversy. Oceanography, 1, 14–17.

    Google Scholar 

  • Yamamoto, S. and R. Ishiwatari (1989): A study of the formation mechanisms of sedimentary humic substances II. Protein-based melanoidin model. Org. Geochem., 14, 479–489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagata, T. (2000). “Picopellets” Produced by Phagotrophic Nanoflagellates: Role in the Material Cycling within Marine Environments. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics