Skip to main content

Production and Turnover of Organic Compounds through Phytoplankton Photosynthesis

  • Chapter
Dynamics and Characterization of Marine Organic Matter

Part of the book series: Ocean Sciences Research (OSR) ((OCRE,volume 2))

Abstract

Primary production of phytoplankton in the surface layer of the ocean down to 200 m depth harvests the sunlight and converts light energy to chemical energy as chemical bonds of organic compounds. The life of marine heterotrophs including zooplankton, bacteria, fish and mammals depends on the organic compounds produced by phytoplankton. Through biological activity, organic compounds are partly decomposed, transformed and transported to the deep layer. The scale of primary productivity in the euphotic layer accordingly regulates the amount of biomass and accompanying material flux throughout the water column including the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Admirraal, W., H. Peletier and P. W. P. M. Laane (1986): Nitrogen metabolism of marine planktonic diatoms; excretion, assimilation and cellular pools of free amino acids in seven species with different cell size. J. Exp. Mar. Biol. Ecol., 98, 241–263.

    Google Scholar 

  • Amon, R. M. W. and R. Benner (1996): Bacterial utilization of different size classes of dissolved organic matter., Limnol. Oceanogr., 41, 41–51.

    Google Scholar 

  • Anerson, G. C. and R. P. Zeutschel (1970): Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the Northeast Pacific Ocean., Limnol. Oceanogr., 15, 402–407.

    Google Scholar 

  • Barlow, R. G. (1982a): Phytoplankton ecology in the Southern Benguela Current. II. Carbon assimilation patterns., J. Exp. Mar. Biol. Ecol., 63, 229–237.

    Google Scholar 

  • Barlow, R. G. (1982b): Phytoplankton ecology in the Southern Benguela Current. III. Dynamics of a bloom., J. Exp. Mar. Biol. Ecol., 63, 239–248.

    Google Scholar 

  • Benner, R. J. D. Pakulski, M. McCarthy, J. I. Hedges and P. G. Hatcher (1992): Bulk chemical characteristics of dissolved organic matter in the ocean., Science, 255, 1561–1564.

    Google Scholar 

  • Berger, W. H., K. Fischer, C. Lai, G. Wu (1987): Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production. p. 67. In SIO Reference Series, 87–30, Scripps Institute of Oceanography, University of California, San Diego.

    Google Scholar 

  • Cauwet, G. (1981): Non-living particulate matter. pp. 71–89. In Marine Organic Chemistry, ed. by E. K. Duursma and R. Dawson, Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  • Chau, Y. K., Chuecas Y. K. L., and J. P. Riley (1967): The component of combined amino acids of some marine phytoplankton species., J. Mar. Biol. Ass. U.K., 47, 543–554.

    Google Scholar 

  • Cuhel, R. L., P. B. Ortner and D. R. S. Lean (1984): Night synthesis of protein by algae., Limnol. Oceanogr., 29, 731–744.

    Google Scholar 

  • Curl, H. and L. F. Small (1965): Variations in photosynthetic assimilation ratios in natural, marine phytoplankton communities., Limnol. Oceanogr., 10, suppl., 67–73.

    Google Scholar 

  • De Baar, H. J. W., J. W. Farrington and S. G. Wakeham (1983): Vertical flux of fatty acids in the North Atlantic Ocean. J. Mar. Res., 41, 9–41.

    Google Scholar 

  • Dortch, Q. and T. T. Packard (1989): Differences in biomass structure between oligotrophic and eutrophic marine ecosystems., Deep-Sea Res., 6, 223–240.

    Google Scholar 

  • Eppley, R. W., W. G. Harrison, S. W. Chisholm and E. Stewart (1977): Particulate organic matter in surface waters off southern California and its relation to phytoplankton., J. Mar. Res., 35, 671–696.

    Google Scholar 

  • Fernandez, E., P. Serret, I. Madariaga, D. S. Harbour and A. G. Davies (1992): Photosynthetic carbon metabolism and biochemical composition of spring phytoplankton assemblages enclosed in microcosms: the diatom—Phaeocystis sp. succession., Mar. Ecol. Prog. Ser., 90, 89–102.

    Google Scholar 

  • Fitzwater, S. E., G. A. Knauer and J. H. Martin (1982): Metal contamination and its effect on primary production measurements., Limnol. Oceanogr., 27, 544–551.

    Google Scholar 

  • Fleming, R. H. (1957): General features of the ocean. p.87–107. In Treatise on Marine Ecology and Paleoecology, ed. J. W. Hedgepeth. Geol. Soc. Amer. Mem., 67.

    Google Scholar 

  • Fogg, G. E. (1966): Extracellular products of algae., Oceanogr. Mar Biol. Ann. Rev. 4, 195–212.

    Google Scholar 

  • Furman, J. A., T. Sleeter and C. Carlson (1987): Oligotrophic ocean biomass is dominated by non-photosynthetic bacteria, even in the euphotic zone., EOS, 68, 1729.

    Google Scholar 

  • Furuya, K., M. Takahashi and T. Nemoto (1986): Summer phytoplankton community structure and growth in a regional upwelling area off Hachijo Island, Japan., J. Exp. Mar. Biol. Ecol., 96, 43–55.

    Google Scholar 

  • Gieskes, W. W. C., G. W. Kraay and M. A. Baars (1979): Current ‘4C methods for measuring primary production: Gross underestimates in oceanic waters., Neth. J. Sea Res., 13, 58–78.

    Google Scholar 

  • Goldman, J. C. (1980): Physiological processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology. pp.179–194. In Primary Productivity in the Sea, ed. by P. G. Falkowski, Plenum Press, New York.

    Google Scholar 

  • Goldman, J. C., J. M. McCarthy and D. G. Peavey (1979): Growth rate influence on the chemical composition of phytoplankton in oceanic waters., Nature, 279, 210–215.

    Google Scholar 

  • Gordon, A. E. and A. Frigerio (1972): Mass fragmentography as an application of gas-liquid chromatography-mass spectrometry in biological research., J. Chromatogr., 73, 401–417.

    Google Scholar 

  • Goes, J. 1., N. Handa, S. Taguchi, T. Hama and H. Saito (1995): Impact of UV radiation on the production patterns and composition of dissolved free and combined amino acids in marine phytoplankton., J. Plankton Res., 17, 1337–1362.

    Google Scholar 

  • Grill, E. A. and R. A. Richards (1964): Nutrient regeneration from phytoplankton decomposing in seawater., J. Mar. Res., 22, 51–69.

    Google Scholar 

  • Guo, L. C. H. Jr Coleman, P. H. Santschi (1994): The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico., Mar. Chem., 45, 105–119.

    Google Scholar 

  • Haberstroh, P. R. and S. I. Ahmed (1985): Resolution by high pressure liquid chromatography of intracellular and extracellular free amino acids of a nitrogen deficient marine diatom, Skeletonema costatum (Grey.) Cleve, pulsed with nitrate or ammonium., J. Exp. Mar. Biol. Ecol., 101, 10 1117.

    Google Scholar 

  • Hama, J. and N. Handa (1986): Analysis of the production processes of natural phytoplankton population using 13C-gas chromatography-mass spectrometry methods., Geochem., 5, 41–46. (in Japanese)

    Google Scholar 

  • Hama, J. and N. Handa (1992): Diel photosynthetic production of cellular organic matter in natural phytoplankton populations, measured with 13C and gas chromatography/mass spectrometry. Monosaccharides., Mar. Biol., 112, 175–181.

    Google Scholar 

  • Hama, T. (1983): Carbohydrates in natural waters–especially in Lake Suwa., La Mer, 21, 248–254 (in Japanese).

    Google Scholar 

  • Hama, T. (1988) 13C-GC-MS analysis of photosynthetic products of the phytoplankton population in the regional upwelling area around the Izu Islands, Japan., Deep-Sea Res., 35, 91–110.

    Google Scholar 

  • Hama, T. (1991) Production and turnover rates of fatty acids in marine particulate matter through phytoplankton photosynthesis., Mar. Chem., 33, 213–227.

    Google Scholar 

  • Hama, T. (1992): Primary productivity and photosynthetic products around the Kuroshio warm-core ring., Deep-Sea Res., 39 (Suppl. 1), S279–293.

    Google Scholar 

  • Hama, T. and N. Handa (1980): Molecular weight distribution and characterization of dissolved organic matter from lake waters., Arch. Hydrobiol., 90, 106–120.

    Google Scholar 

  • Hama, T., and N. Handa (1982): The seasonal variation of organic constituents in a eutrophic lake, Lake Suwa Japan Part I. Particulate organic matter., Arch. Hydrobiol., 93, 446–465.

    Google Scholar 

  • Hama, T., and N. Handa (1983): The seasonal variation of organic constituents in a eutrophic lake, Lake Suwa Japan Part II. Dissolved organic matter. Arch. Hydrobiol., 98, 443–462.

    Google Scholar 

  • Hama, T. and N. Handa (1987a): Pattern of organic matter production by natural phytoplankton population in a eutrophic lake. 1 Intracellular products., Arch. Hydrobiol., 109, 107–120.

    Google Scholar 

  • Hama, T. and N. Handa (1987b): Pattern of organic matter production by natural phytoplankton population in a eutrophic lake. 2 Extracellular products., Arch. Hydrobiol., 109, 227–243.

    Google Scholar 

  • Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., and Ichimura, S., (1983): Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope., Mar. Biol., 73, 31–36.

    Google Scholar 

  • Hama, T., J. Hama and N. Handa (1987): Determination of amino acid production rate of a marine phytoplankton population with 13C and gas chromatography-mass spectrometry., Limnol. Oceanogr., 32, 1144–1153.

    Google Scholar 

  • Hama, T., J. Hama and N. Handa (1993): 13C tracer methodology in microbial ecology with special reference to primary production processes in aquatic environments. Adv. Microbial. Ecol., 13, 39–83.

    Google Scholar 

  • Handa, N. (1969): Carbohydrate metabolism in the marine diatom Skeletonema costatum., Mar. Biol., 4, 208–214.

    Google Scholar 

  • Handa, N. and H. Tominaga (1969): A detailed analysis of carbohydrates in marine particulate matter., Mar. Biol., 2, 223–235.

    Google Scholar 

  • Handa, N. and K. Yanagi (1969): Studies on water-extractable carbohydrates of the particulate matter from the northwest Pacific Ocean., Mar. Biol., 4, 197–207.

    Google Scholar 

  • Harris, G. P. (1980): The measurement of photosynthesis in natural populations of phytoplankton. pp. 129–187. In The Physiological Ecology of Phytoplankton. ed. by I. Morris, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hellebust, J. A. (1965): Excretion of some organic compounds by marine phytoplankton., Limnol. Oceanogr., 10, 192–206.

    Google Scholar 

  • Hellebust, J. A. (1974): Extracellular products. pp. 838–865. In. Algal Physiology and Biochemistry, ed. by W. P. D. Stewart, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Heyward, T. L., E. L. Venrick and J. A. McGowan (1983): Environmental heterogeneity and plankton community structure in the central North Pacific., J. Mar. Res., 41, 711–729.

    Google Scholar 

  • Hitchcock, G. L. (1978): Labeling patterns of carbon-14 in net plankton during a winter-spring bloom. J. Exp. Mar. Biol. Ecol., 31, 141–153.

    Google Scholar 

  • Hitchcock, G. L. (1983): Photosynthate partitioning in cultured marine phytoplankton. I. Dinoflagellates., J. Exp. Mar, Biol. Ecol., 69, 21–36.

    Google Scholar 

  • Horne, A. J., G. E. Fogg and D. J. Eagle (1969): Studies in situ of the primary production of an area of inshore Antarctic Sea. J. Mar. Biol. Assoc. U.K., 49, 393–405.

    Google Scholar 

  • Iturriaga, R. and H. -G. Hoppe (1977): Observations of heterotrophic activity on photoassimilated organic matter., Mar. Biol., 40, 101–108.

    Google Scholar 

  • Jahnke. R. A. (1996): The global ocean flux of particulate organic carbon: A real distribution and magnitude., Global Biogeochem. Cycles, 10, 71–88.

    Google Scholar 

  • Jenkins (1982): Oxygen utilization rates in the North Atlantic Subtropical Gyre and primary production in oligotrophic systems., Nature, 300, 246–248.

    Google Scholar 

  • Jenkins and Goldman (1985): Seasonal oxygen cycling and primary production in the Sargasso Sea., J. Mar. Res., 43, 465–491.

    Google Scholar 

  • Jensen, L. M., N. O. G., Jorgensen and M. Sondergard (1985): Specific activity: significance in estimating release rates of extracellular dissolved organic carbon (EDOC) by algae., Verh. Internat. Verein. Limnol., 22, 2893–2897.

    Google Scholar 

  • Joint, P. A. and R. J. Morris (1982): The role of bacteria in the turnover of organic matter in the sea., Oceanogr. Mar Biol. Anna. Rev., 20, 65–118.

    Google Scholar 

  • Jonasdottir, S. H., D. Fields and S. Pantoja (1995): Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston., Mar. Ecol. Prog. Ser., 119, 87–98.

    Google Scholar 

  • Jumars, P. A., D. L. Baross, N. J. Pery and B. W. Ferost (1989): Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals., Deep-Sea Res., 36, 483–495.

    Google Scholar 

  • Kayama, M. S. Araki and S. Sato (1989): Lipids of marine plants. pp.3–48. In Marine Biogenic Lipids, Fats, and Oils. Vol. 11“, ed. by R. G. Ackman, CRC Press, Florida

    Google Scholar 

  • Knauer, G. A. (1993): Productivity and new production of the ocean system. pp. 221–231 In Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Ed. by R. Wollast, Springer-Verlag, Berlin..

    Google Scholar 

  • Knopka, A. and M. Schnur (1980): Effect of light intensity on macromolecular synthesis in cyanobacteria., Microb. Ecol., 6, 291–301.

    Google Scholar 

  • Koblentz-Mishke, O. I., V. V. Volkovinskiy and Yu. G. Kabanova (1970): Plankton primary production of the World Ocean. pp.183–193 In Scientific Exploration of the Sough Pacific, ed. by W. Wooster, National Academy of Sciences., Washington, D. C.

    Google Scholar 

  • Kokkinakis, S. A. and P. A. Wheeler (1987): Nitrogen limitation and phytoplankton growth in coastal upwelling regions. Limnol. Oceanogr., 32, 1112–1123.

    Google Scholar 

  • Kouchi, H. (1982): Direct analysis of 13C abundance in plant carbohydrates by gas chromatography-mass spectrometry., J. Chromatogr., 21, 305–323.

    Google Scholar 

  • Larsson, U. and A. Hagstrom (1982): Phytoplankton exudate release as an energy source for the growth of pelagic bacteria., Mar. Biol., 52, 199–206.

    Google Scholar 

  • Laws, E. A., G. R. DiTullio and D. G. Redalje (1987): High phytoplankton growth and production rates in the North Pacific subtropical gyre., Limnol. Oceanogr., 32, 905–918.

    Google Scholar 

  • Laws, E. A., G. R. DiTullio, P. R. Betzer, D. M. Karl and K. L. Carder (1989): Autotrophic production and elemental fluxes at 26°N, 155°W in the North Pacific subtropical gyre., Deep-Sea Res., 36, 103–120.

    Google Scholar 

  • Leftley, J. W., D. J. Bonin and S. Y. Maestrini (1983): Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: An overview of methodology., Oceanogr. Mar. Biol. Annu. Rev., 21, 23–66.

    Google Scholar 

  • Letelier, R. M., J. E. Dore, C. D. Winn, and D. M. Karl (1996): Seasonal and interannual variations in photosynthetic carbon assimilation at Station ALOHA., Deep-Sea Res., 43, 467–490.

    Google Scholar 

  • Li, W. K. W., H. E. Glover and I. Morris (1980): Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea., Limnol. Oceanogr., 25, 447–456.

    Google Scholar 

  • Lignell, R. (1990): Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity L: the Baltic Sea., Mar. Ecol. Prog. Ser., 68, 85–99.

    Google Scholar 

  • Longhurst, A. R. (1991): Role of the marine biosphere in the global carbon cycle., Limnol. Oceanogr., 36, 1507–1526.

    Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer data., J. Plankton Res., 17, 1245–1271.

    Google Scholar 

  • Mague, T. H., E. Friberg, D. J. Hughes and I. Morris (1980): Extracellular release of carbon by marine phytoplankton; a physiological approach., Limnol. Oceanogr., 25, 262–279.

    Google Scholar 

  • Malone, T. C. (1971): The relative importance of nanoplankton and netplankton as primary producers in tropical oceanic and neritic phytoplankton communities., Limnol. Oceanogr., 16, 633–639.

    Google Scholar 

  • Marra, J. and K. R. Heinemann (1987): Primary production in the North Pacific central gyre: some new measurements based on 14C., Deep—Sea Res., 34, 1821–1829.

    Google Scholar 

  • Martin, J. H., G. A. Knauer, D. M. Karl and W. W. Broenkow (1987) VERTEX: carbon cycling in the northeast Pacific., Deep—Sea Res., 34, 267–285.

    Google Scholar 

  • Matsunaga, K. (1981): Studies on the decompositive processes of phytoplanktonic organic matter., Jap. J. Limnol., 42, 220–229.

    Google Scholar 

  • Meybeck, M. (1982): Carbon, nitrogen, and phosphorus transport by world rivers., Am. J. Sci., 282, 401–450.

    Google Scholar 

  • Moal, J., V. Martin—Jezequel, R. P. Harris, J—F. Samain, and S. A. Poulet (1987): Interspecific and intraspecific variability of the chemical composition of marine phytoplankton., Oceanolo. Acta., 10, 339–346.

    Google Scholar 

  • Morris, I. And W. Skea (1978): Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine., Mar. Biol., 47, 303–312.

    Google Scholar 

  • Murray, J. W (1992): The Oceans, pp.175–211. In Global Biogeochemical Cycles, ed. by S. S. Butcher, R. J. Charlson, G. H. Orians and G. V. Wolfe, Academic Press Limited, London.

    Google Scholar 

  • Myklestad, S. (1974): Production of carbohydrates by marine planktonic diatoms. L Comparison of nine different species in culture., J. Exp. Mar. Biol. Ecol., 15, 261–274.

    Google Scholar 

  • Myklestad, S. (1977): Production of carbohydrates by marine planktonic diatoms. Il. Influence of the N/P ratio in the growth medium on the assimilation ratio, growth rate, and production of extracellular carbohydrate by the diatoms Chaetoceros affinis var. willei and Skeletonema costatum. J. Exp. Mar. Biol. Ecol., 29, 161–179.

    Google Scholar 

  • Myklestad, S. and Haug, A. (1972): Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium., J. Exp. Mar. Biol. Ecol., 9, 125–136.

    Google Scholar 

  • Olive, J. H. and J. H. Morrison (1967): Variations in distribution of 14C in cell extracts of phytoplankton living under natural conditions., Limnol. Oceanogr., 12, 383–391.

    Google Scholar 

  • Olive, J. H., D. M. Benton and J. Kishler (1969): Distribution of C-14 products of photosynthesis and its relationship to phytoplankton composition and rate of photosynthesis., Ecology, 50, 380–386.

    Google Scholar 

  • Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, Mi. I. Dyer and D. H. Taalon (1985): The natural carbon cycle. pp.175–213. In Atospheric Carbon Dioxide and the Global Carbon Cycle. ed. by J. R. Trabalka, US Department of Energy, Washington, D.C.

    Google Scholar 

  • Otsuki, A. and T. Hanya (1972): Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition., Limnol. Oceanogr., 17, 248–257.

    Google Scholar 

  • Parsons, T. R., K. Stephens and J. D. M. Strickland (1961): On the chemical composition of eleven species of marine phytoplankton., J. Fish. Res. Board Can., 18, 1001–1016.

    Google Scholar 

  • Perry, G. J., J. K. Volkman, R. B. Johns and H. J. Jr Bovor (1979): Fatty acids of bacterial origin in contemporary marine sediments. Geochim. Cosmochim. Acta, 43, 1715–1725.

    Google Scholar 

  • Prahl, F. G., G. Eglinton, E. D. S. Corner, S. C. M. OíHara and T. E. V. Forsberg (1984): Changes in plant lipids during passage through the gut of Calanus., J. Mar. Biol. Ass. U.K., 64, 317–334.

    Google Scholar 

  • Priscu, J. C. and L. R. Priscu (1984): Photosynthate partitioning by phytoplankton in a New Zealand coastal upwelling system., Mar. Biol., 81, 31–40.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of seawater. pp.26–77. In The Sea, vol. 2, ed. by M. N. Hill, Wiley—Interscience, New York.

    Google Scholar 

  • Rivkin, R. B. (1989): Influence of irradiance and spectral quality on the carbon metabolism of phytoplankton. I. Photosynthesis, chemical composition and growth., Mar. Biol. Prog. Ser., 55, 291–304.

    Google Scholar 

  • Romankovich, E. A. (1984): Geochemistry of Organic Matter in the Ocean. p. 334 Springer-Verlag, New York,.

    Google Scholar 

  • Sakshaug, E. and O. Holm—Hansen (1977): Chemical composition of Skeletonema costatum and Pavlova (Monochrysis) lutheri as a function of nitrate—, phosphate— and iron—limited growth., J. Exp. Mar. Biol. Ecol., 28, 109–123.

    Google Scholar 

  • Samuel, S., N. M. Shah and G. E. Fogg (1971): Liberation of extracellular products of photosynthesis by tropical phytoplankton., J. Mar. Biol. Ass. U.K., 51, 793–798.

    Google Scholar 

  • Santschi, P. H., L. Guo, M. Baskaran, S. Trumbore, J. Southon, T. S. Bianchi, B. Honeyman and L. Cifuentes (1995): Isotopic evidence for the contemporary origin of high—molecular weight organic matter in oceanic environments., Geochim. Cosmochim. Acta, 59, 625–631.

    Google Scholar 

  • Saunders, G. W. (1976): Decomposition in freshwater. pp.341–373. In The role of Terrestrial and Aquatic Organisms in Decomposition Processes, ed. by J. M. Anderson and A. Macfadyen, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Sharp, J. H. (1977): Excretion of organic matter by marine phytoplankton. Do healthy cells do it?, Limnol. Oceanogr., 22, 381–199.

    Google Scholar 

  • Sharp, J. H., R. Benner, L. Bennet, C. A. Carlson, S. E. Fizwater, T. T. Peltzer and L. M. Tupas (1995): Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison., Mar. Chem., 48, 91–108.

    Google Scholar 

  • Siezen, R. J. and T. H. Mague (1978): Amino acids in suspended particulate matter from oceanic and coastal waters of the Pacific., Mar. Chem., 6, 215–231.

    Google Scholar 

  • Slawyk, G., Y. Collos and J. C. Auclair (1977): The use of the 13C and ‘5N isotopes for the simultaneous measurement of carbon and nitrogen turnover rates in marine phytoplankton., Limnol. Oceanogr., 22, 925–932.

    Google Scholar 

  • Slawyk, G., Y. Collos and J. C. Auclair (1979): Reply to comment by Fisher et al., Limnol. Oceanogr.,24 595–597.

    Google Scholar 

  • Smith, A. E. and I. Morris (1980): Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean., Limnol. Oceanogr., 25, 865–872.

    Google Scholar 

  • Smith, W. O., R. T. Barber and S. A. Huntsmann (1977): Primary production off the coast of Northwest Africa: Excretion of dissolved organic matter and its heterotrophic uptake., Deep—Sea Res., 24, 35–47.

    Google Scholar 

  • Steemann Nielsen, E. (1952): The use of radioactive carbon (C 14) for measuring organic production in the sea., J. Cons. int. Explor Mer., 18, 117–140.

    Google Scholar 

  • Storch, T. A. and G. W. Saunders (1978): Phytoplankton extracellular release and its relation to seasonal cycle of dissolved organic carbon in a eutrophic lake., Limnol. Oceanogr., 23, 112–119.

    Google Scholar 

  • Summonds, R. W., W. E. Pereira, W. E. Reynolds, T. C. Rindfleisch and A. M. Duffield (1974): Analysis of twelve amino acids in biological fluids by mass fragmentography., Anal. Chem., 46, 582–587.

    Google Scholar 

  • Takahashi, M., J. Ishizaka, T. Ishimaru, L. P. Atkinson, T. N. Lee, Y. Yamaguchi, Y. Fujita and S. Ichimura (1986): Temporal change in nutrient concentrations and phytoplankton biomass in short time scale local upwelling around the Izu Peninsula, Japan., J. Plankton Res., 8, 1039 1049.

    Google Scholar 

  • Tanoue, E. and N. Handa (1980): Vertical transport of organic materials in the northern North Pacific as determined by sediment trap experiment. Part I. Fatty acid composition. J. Oceanogr. Soc. Japan., 36, 231–245.

    Google Scholar 

  • Thomas, J. P. (1971): Release of dissolved organic matter from natural populations of marine phytoplankton., Mar. Biol., 11, 311–323.

    Google Scholar 

  • Thomas, W. H. (1970): On nitrogen deficiency in tropical Pacific oceanic phytoplankton: photosynthetic parameters in poor and rich water., Limnol. Oceanogr., 15, 380–385.

    Google Scholar 

  • Van den Heuvel, W. J. A., J. L. Smith and J. S. Cohen (1970): Gas liquid chromatography and mass spectrometry of carbon—I3 enriched and deuterated amino acids as trimethylsilyl derivatives., J. Chromatogr. Sci., 8, 567–576.

    Google Scholar 

  • Volkman, K. J., R. B. Johns, F. T. Gillan, G. J. Perry and H. J. Savor Jr. (1980): Microbial lipids of an intertidal sediment-1. Fatty acids and hydrocarbons., Geochim. Cosmochim. Acta., 44, 1133–1143.

    Google Scholar 

  • Wakeham, S. G. and E. A. Canuel (1988): Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particulate dynamics., J. Mar. Res., 46, 183–213.

    Google Scholar 

  • Wallen, D. G. and G. H. Geen (1971): The nature of the photosynthate in natural phytoplankton populations in relation to light quality., Mar. Biol., 10, 157–168.

    Google Scholar 

  • Watt, W. D. (1966): The release of dissolved organic material from the cells of phytoplankton populations., Proc. Roy. Soc. Loud. B, 164, 521–551.

    Google Scholar 

  • Williams, P. J. LeB. and C. S. Yentsch (1976): An examination of photosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea., Mar. Biol., 35, 31–40.

    Google Scholar 

  • Williams, P. M. (1971): The distribution and cycling of organic matter in the ocean. pp.145–163. In Organic compounds in Aquatic Environments, ed. by S. J. Faust and J. V. Hunter, Marcel Dekker, New York.

    Google Scholar 

  • Williams, P. M. and E. R. M. Druffel (1987): Radiocarbon in dissolved organic matter in the Central North Pacific Ocean., Nature, 330, 246–248.

    Google Scholar 

  • Wollast, R. (1991): The coastal organic carbon cycle: fluxes, sources, and sinks. p.365–381. In Ocean margin Processes in Global Change, ed. by R. F. C. Mantoura, J. —M. Martin and R. Wollast, John Wiley & Sons, Chichester.

    Google Scholar 

  • Wood, B. J. B. (1974): Fatty acids and saponifiable lipids. pp.236–265. In Algal Physiology and Biochemistry, ed. by W. D. W. Stewart, Blackwell Scientific Publications, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hama, T. (2000). Production and Turnover of Organic Compounds through Phytoplankton Photosynthesis. In: Handa, N., Tanoue, E., Hama, T. (eds) Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research (OSR), vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1319-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1319-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5451-7

  • Online ISBN: 978-94-017-1319-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics