Skip to main content

Effects of Genetic Differences among Crop Species and Cultivars Upon the Arbuscular Mycorrhizal Symbiosis

  • Chapter
Arbuscular Mycorrhizas: Physiology and Function

Abstract

Crop species and cultivars within species can differ markedly in their ability to respond to colonization by arbuscular mycorrhizal (AM) fungi. The variation in response to mycorrhizas has largely been overlooked by plant breeders, even when germplasm is screened for efficiency of nutrient uptake and efficiency of nutrient use, processes influenced greatly by mycorrhizal fungi. Host germplasm is frequently selected under conditions that would not favor, and indeed might prevent, a response to mycorrhizal fungi, i.e. high nutrient availability. Continued breeding of crop plants without regard to mycorrhiza responsiveness is irresponsible, as it could result not only in increased requirement for nutrient inputs in the short term, but also the inadvertent, permanent loss of these genes in crop germplasm. Loss of colonization by AM fungi could also result in the loss of other important benefits provided by mycorrhizal fungi (drought tolerance, resistance to disease, uptake of other nutrients, maintaining soil structure) and reduce the population of AM fungi able to colonize other hosts in the cropping system. Plant breeders should determine the contribution of mycorrhizal fungi to nutrient uptake by evaluating plant growth with and without mycorrhizas over a full range of nutrient levels; i. e. develop response curves for the variable of interest. Ultimately the goal should be to map genes responsible for mycorrhizal colonization and responsiveness, and to utilize them in developing cultivars which can more effectively acquire nutrients from input low input agricultural systems and take advantage of the other benefits provided by the mycorrhizal symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.K. and Robson, A.D. 1984. The effect of mycorrhizae on plant growth. In: VA Mycorrhizae. C. L. Powell and D. J. Bagyaraj, eds. CRC Press, Boca Raton, Florida 113–130.

    Google Scholar 

  2. An, Z.-Q., Guo, B.Z. and Hendrix, J.W. 1993. Mycorrhizal pathogen of tobacco: cropping history and current crop effects on the mycorrhizal fungal community. Crop Protection. 12: 527–531.

    Article  Google Scholar 

  3. Baon, J.B., Smith, S.E. and Alston, A.M. 1993. Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil. 157: 97–105.

    Google Scholar 

  4. Bethlenfalvay, G.J., Pacovsky, R.S. and Brown, M.S. 1982. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: development of the endophyte. Phytopathol. 72: 894–897.

    Article  CAS  Google Scholar 

  5. Dhillion, S. 1992. Host-endophyte specificity of vesicular-arbuscular mycorrhizal colonization of Oryza saliva L. at the pre-transplant stage in low or high phosphorus soil. Soil Biol. Biochem. 24: 405–411.

    Article  Google Scholar 

  6. Dodd, J.C., Arias, I., Koomen, I. and Hayman, D.S. 1990. The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem. I. The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil. 122: 229–240.

    CAS  Google Scholar 

  7. Douglas, A.E. 1998. Host benefit and the evolution of specialization in symbiosis. Heredity. 81: 599–603.

    Article  Google Scholar 

  8. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S. 1989. First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.) Plant Sci. 60: 215–222.

    Google Scholar 

  9. Fairchild, G.L. and Miller, M.H. 1990. Vesicular-arbuscular mycorrhizas and the soil-disturbance induced reduction of nutrient absorption in maize III Influence of P amendments to soil. New Phytol. 114: 641–650.

    Article  CAS  Google Scholar 

  10. Fitter, A.H. 1991. Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experientia. 47: 350–355.

    Article  Google Scholar 

  11. Gerdemann, J.W. 1975. Vesicular-arbuscular mycorrhizae. In: The Development and Function of Roots. J. G. Torrey and D. T. Clarkson, eds. Academic Press, San Diego. pp 575–591.

    Google Scholar 

  12. Gianinazzi-Pearson, V. 1984. Host-fungus specificity, recognition and compatibility in mycorrhizae. In: Genes Involved in Microbe-Plant Interactions. D.P.S. Verma and T. Hohn, eds. Springer-Verlag, Vienna pp 223–253.

    Google Scholar 

  13. Giovannetti, M. and Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84: 489–500.

    Article  Google Scholar 

  14. Graham, J H and Eissenstat, D.M. 1992. Host genotype and the formation and function of VA mycorrhizae. In: Management of Mycorrhizas in Agriculture, Horticulture and Forestry. A. D. Robson, L. K. Abbott and N. Malajczuk, eds. Kluwer Academic Publishers, Durdrecht, The Netherlands. pp 179–185.

    Google Scholar 

  15. Hall, I. R. 1988. The potential for exploiting vesicular-arbuscular mycorrhiza in agriculture. In: Advances in Biotechnological Processes. A. Mizrali, ed. Alan R. Liss, New York. pp 141–174.

    Google Scholar 

  16. Hetrick, B.A.D., Wilson, G.W.T. and Cox, T.S. 1992. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can. J. Bot. 70: 2032–2040.

    Article  Google Scholar 

  17. Hetrick, B. A. D., Wilson, G. W. T. and Cox, T. S. 1993. Mycorrhizal dependence of modern wheat varieties and ancestors: a synthesis. Can. J. Bot. 71: 512–518.

    Article  Google Scholar 

  18. Hetrick, B.A.D., Wilson, G.W.T., Gill, B.S. and Cox, T.S. 1995. Chromosomal location of mycorrhizal responsive genes in wheat. Can. J. Bot. 73: 891–897.

    Article  Google Scholar 

  19. Hetrick, B. A. D., Wilson, G. W. T. and Todd, T. C. 1996. Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can. J. Bot. 74: 19–25.

    Article  CAS  Google Scholar 

  20. Hoeksema, J. D. 1999. Investigating the disparity in host specificity between AM and EM fungi: lessons from theory and better-studied systems. Oikos. 84: 327–332.

    Article  Google Scholar 

  21. Johnson, N.C., Pfleger, F.L., Crookston, R.K., Simmons, S.R. and Copeland, P.J. 1991. Vesicular-arbuscular mycorrhizas respond to corn and soybean cropping history. New Phytol. 117: 657–663.

    Article  Google Scholar 

  22. Johnson, N. C., Copeland, P. J., Crookston, R. K. and Pfleger, F. L. 1992. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron. J. 84: 387–390.

    Article  Google Scholar 

  23. Kaeppler, S.M., Parke, J. L., Mueller, S.M., Senior, L. and Stuber, C. 1999. Quantitative trait loci controlling maize growth at low soil phosphorus levels and responsiveness to arbuscular mycorrhizal fungi. Crop Sci. (in press)

    Google Scholar 

  24. Kesava Rao, P. S., Tilak, K V B R and Arunachalam, V. 1990. Genetic variation for VA mycorrhiza-dependent phosphate mobilization in groundnut (Arachis hypogaea L.) Plant Soil. 122: 137–142.

    Google Scholar 

  25. Koide, R. and Elliot, G. 1989. Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct. Ecol. 3: 252–255.

    Google Scholar 

  26. Kormanik, P P and McGraw, A. C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Methods and Principles of Mycorrhizal Research. N. C. Schenck, ed. APS Press, St. Paul, Minn pp 37–45.

    Google Scholar 

  27. Krishna, K R, Shetty, K. G., Dart, P. J. and. Andrews, D. J. 1985. Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil. 86: 113–125.

    Google Scholar 

  28. Kruckelmann, H.W. 1975. Effects of fertilizers, soils, soil tillage and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Endomycorrhizas F.E. Sanders, B. Mosse, and P.B. Tinker, eds. Academic Press, New York. pp 511–525.

    Google Scholar 

  29. Lackie, S. M., Bowley, S. R. and Peterson, R. L. 1988. Comparison of colonization among half-sib families ofMedicago sativa L. by Glomus versiforme ( Daniels and Trappe) Berch. New Phytol. 108: 477–482.

    Article  Google Scholar 

  30. Lynch, J. P. and Beebe, S. E. 1995. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortSci. 30: 1165–1171.

    CAS  Google Scholar 

  31. McGonigle, T. P. and Fitter, A. H. 1990. Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol. Res. 94: 120–122.

    Article  Google Scholar 

  32. Mercy, M. A., Shivashankar, G.and. Bagyaraj, D. J. 1990. Mycorrhizal colonisation in cowpea is host dependent and heritable. Plant Soil. 121: 292–294.

    Google Scholar 

  33. Miller, D. D., Domoto, D. A., and Walker, C. 1985. Colonization and efficacy of different endomycorrhizal fungi with apple seedlings at two phosphorus levels. New Phytol. 100: 393–402.

    Article  Google Scholar 

  34. Modjo, H. S. and Hendrix, J. W. 1986. The mycorrhizal fungus, Glomus macrocaropum as a cause of tobacco stunt disease. Phytopathol. 76: 668–691.

    Article  Google Scholar 

  35. Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhizas. Annu. Rev. Phytopathol. 11: 170–196.

    Article  Google Scholar 

  36. Pacioni, G. 1994. Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi. In: Techniques for Mycorrhizal Research J. R. Norris, D. Read and A. K. Varna, eds. Academic Press, San Diego. pp 777–782.

    Google Scholar 

  37. Schreiner, P. and G. Bethlenfalvay. 1995. Mycorrhizal interactions in sustainable agriculture. Crit. Rev. Biotech. 15: 271–285.

    Article  Google Scholar 

  38. Sieverding, E. and Liehner, D.E. 1984. Influence of crop rotation and intercropping of cassava with legumes on VA mycorrhizal symbiosis of cassava. Plant Soil. 80: 143–146.

    Article  Google Scholar 

  39. Smith, S. E. and Read., D. J. 1997. Mycorrhizal Symbiosis ( Second Ed. ). Academic Press, San Diego, California. 605 pp.

    Google Scholar 

  40. Smith, S. E., Robson, A. D. and Abbott, L. K. 1992. The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil. 146: 169–179.

    Article  CAS  Google Scholar 

  41. Sylvia, D. M. 1994. Quantification of external hyphae of vesicular-arbuscular mycorrhizal fungi In: Techniques for Mycorrhizal Research. J. R. Norris, D. Read and A. K. Varna, eds. Academic Press, San Diego. pp 513–525.

    Google Scholar 

  42. Sylvia, D. M. and Williams, S. E. 1992. Vesicular-arbuscular mycorrhizae and environmental stress. In: Mycorrhizae in Sustainable Agriculture. G. J. Bethlenfalvay and R. G. Linderman, eds. ASA Special Publ. No. 54. Soil Science Society of America, Madison, WI. pp 101–124.

    Google Scholar 

  43. Thompson, J. P. 1994. Inoculation with vesicular-arbuscular fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake. Soil Biol. and Biochem. 26: 1133–1143.

    Article  CAS  Google Scholar 

  44. Tisdall, J. M. 1991. Fungal hyphae and structural stability of soil. Austral. J. Soil Res. 29: 729–743.

    Article  Google Scholar 

  45. Toth, R., Page, T. and Castleberry, R. 1984. Differences in mycorrhizal colonization of maize selections for high and low ear leaf phosphorus. Crop Sci. 24: 994–997.

    Article  Google Scholar 

  46. Toth, R., Toth, D. and Starke, D. 1990. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can. J. Bot. 68: 1039–1044.

    Article  Google Scholar 

  47. Trappe, J. M. 1987. Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Ecophysiology of VA Mycorrhizal Plants. G. R. Safir, ed. CRC Press, Boca Raton, Florida. pp 5–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parke, J.L., Kaeppler, S.W. (2000). Effects of Genetic Differences among Crop Species and Cultivars Upon the Arbuscular Mycorrhizal Symbiosis. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics