Skip to main content

Live history evolution in Serpulimorph polychaetes: a phylogenetic analysis

  • Conference paper
Advances in Polychaete Research

Part of the book series: Developments in Hydrobiology ((DIHY,volume 170))

  • 200 Accesses

Abstract

The widely accepted hypothesis of plesiomorphy of planktotrophic, and apomorphy of lecithotrophic, larval development in marine invertebrates has been recently challenged as a result of phylogenetic analyses of various taxa. Here the evolution of planktotrophy and lecithotrophy in Serpulimorph polychaetes (families Serpulidae and Spirorbidae) was studied using a hypothesis of phylogenetic relationships in this group. A phylogenetic (parsimony) analysis of 36 characters (34 morphological, 2 developmental) was performed for 12 selected serpulid and 6 spirorbid species with known reproductive/developmental strategies. Four species of Sabellidae were used in the outgroup. The analysis yielded 4 equally parsimonious trees of 78 steps, with a consistency index (CI) of 0.654 (CI excluding uninformative characters is 0.625). Under the assumption of unweighted parsimony analysis, planktotrophic larvae are apomorphic and non-feeding brooded embryos are plesiomorphic in serpulimorph polychaetes. The estimated polarity of life history transitions may be strengthened by further studies demonstrating an absence of a unidirectional bias in planktotrophy-lecithotrophy transition in polychaetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J. H., 1969. Methods of brood protection as a basis for reclassification of the Spirorbinae (Serpulidae). Zool. J. linn. Soc. 48: 387–407.

    Google Scholar 

  • Bhaud, M. & J.-C. Duchene, 1996. Change from planktonic to benthic development: is life cycle evolution an adaptive answer to the constraints of dispersal? Oceanol. Acta 19: 335–346.

    Google Scholar 

  • Emlet, R., 1995. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythogramma. Dev. Biol. 167: 405–415.

    Google Scholar 

  • Fitzhugh, K., 1989. A systematic revision of the SabellidaeCaobangidae-Sabellongidae complex ( Annelida: Polychaeta). Bull. Am. Mus. nat. Hist. 192: 1–104.

    Google Scholar 

  • Hart, M. W., 1995. What are costs of small egg size for a marine invertebrate with feeding planktonic larvae ? Am. Nat. 146: 415– 426.

    Google Scholar 

  • Hart, M. W., M. Byrne, & M. J. Smith, 1997. Molecular phylogenetic analysis of life history evolution in asterinid starfish. Evolution 51: 1848–1861.

    Article  Google Scholar 

  • Haszprunar, G., L., Salvini-Plawen and R. M. Rieger, 1995. Larval planktotrophy–a primitive trait in Bilateralia? Acta zool. 76: 141–154.

    Google Scholar 

  • Havenhand, J., 1995. Evolutionary ecology of larval types. In McEdward, L. R. (ed.), Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, Florida: 79–122.

    Google Scholar 

  • Jägersten, G., 1972. Evolution of the Metazoan Life Cycle. A Comprehensive Theory. Academic Press, London. 282 pp.

    Google Scholar 

  • Kupriyanova, E. K., 1999. The taxonomic status of Serpula columbiana Johnson 1901 the Asian and American coasts of the North Pacific Ocean. Ophelia 50: 21–34.

    Article  Google Scholar 

  • Kupriyanova, E. K. & I. A. Jirkov, 1997. Serpulidae (Annelida, Polychaeta) of the Arctic Ocean. Sarsia 82: 203–236.

    Google Scholar 

  • Kupriyanova, E. K., E. Nishi, H. A. Ten Hove & A. V. Rzhavsky, 2001. Life history patterns in serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr. mar. biol. Ann. Rev. 39: 1–101.

    Google Scholar 

  • Lacalli, T. C., 1976. Remarks on the larvae of two serpulids (Polychaeta) from Barbados. Can. J. Zool. 55: 303–305.

    Google Scholar 

  • McEdward, L. R. & D. Janies, 1997. Relationships among development, ecology, and morphology in the evolution of Echinoderm larvae and life cycles. Biol. J. linn. Soc. 60: 381–400.

    Google Scholar 

  • Mchugh, D., 1994. Phylogenetic analysis of the Amphitrinae ( Polychaeta: Terebellidae). Zool. J. linn. Soc. 111: 405–429.

    Google Scholar 

  • McHugh, D. & G. Rouse, 1998. Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol. Evol. 13: 182–186.

    Google Scholar 

  • Nishi, E., 1993. On the origin of brooding characteristics in spirorbids with the phylogeny of sabellids and serpulids (Annelida, Polychaeta, Sedentaria). Proc. Jap. Soc. Syst. Zool. 49: 6–13.

    Google Scholar 

  • Pillai, T. G., 1970. Studies on a collection of spirorbids from Ceylon, together with a critical review and revision of spirorbid systematics, and an account of their phylogeny and zoogeography. Ceylon J. Sci. ( Biol. Sci. ) 8: 100–172.

    Google Scholar 

  • Ponder, W. & D. R. Lindberg, 1997. Towards a phylogeny of gastropod molluscs–analysis using morphological characters. Zool. J. linn. Soc. 199: 83–265.

    Google Scholar 

  • Reid, D. G., 1989. The comparative morphology, phylogeny, and evolution of the gastropod family Littorinidae. Phil. Trans. R. Soc., Lond. B, 234: 1–110.

    Google Scholar 

  • Rouse, G. W., 1999. Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa. Biol. J. linn. Soc. 66: 411–464.

    Google Scholar 

  • Rouse, G. W., 2000a. Polychaetes have evolved feeding larvae several times. Bull. mar. Sci. 67: 391–409.

    Google Scholar 

  • Rouse, G. W., 2000b. The epitome of hand waving? Larval feeding and hypotheses of metazoan phylogeny. Evol. Dev. 2: 222–233.

    Google Scholar 

  • Rouse, G. W., 2000c. Bias? What bias? Gain and loss of downstream larval feeding in animals. Zool. Scr. 29: 213–236.

    Google Scholar 

  • Rouse, G. & K. Fitzhugh, 1994. Broadcasting fables: is external fertilization really primitive? Sex, size, and larvae in sabellid polychaetes. Zool. Scr. 23: 271–312.

    Google Scholar 

  • Salvini-Plawen, L. V., 1985. Early evolution and the primitive groups. In Trueman, E. R and. M. R. Clarke (eds), The Mollusca. Vol 10, Evolution: 59–150.

    Google Scholar 

  • Smith, A., 1997. Echinoderm larvae and phylogeny. Ann. Rev. Ecol. Syst. 2: 19–41.

    Google Scholar 

  • Smith, R. S., 1991. Relationships within the Order Sabellida ( Polychaeta ). Ophelia Suppl. 5: 249–260.

    Google Scholar 

  • Strathmann, R. R., 1978. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32: 894–906.

    Article  Google Scholar 

  • Strathmann, R. R., 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Ann. Rev. Ecol. Syst. 16: 339–361.

    Google Scholar 

  • Strathmann, R. R., 1993. Hypotheses on the origin of marine larvae. Ann. Rev. Ecol. Syst. 224: 89–117.

    Google Scholar 

  • Strathmann, R. R., T. L. Jahn & J. R. C. Fonseca, 1972. Suspension feeding by marine invertebrate larvae: clearance of particles by ciliated bands of a rotifer, pluteus, and trochophore. Biol. Bull. 142: 505–519.

    Google Scholar 

  • Strathmann, R. R. & D. Eernisee, 1994. What molecular phylogenies tell us about the evolution of larval forms. Am. Zool. 34: 502–512.

    Google Scholar 

  • Swofford, D. L., 1999. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates. Sunderland, MA.

    Google Scholar 

  • Thorp, C. H., 1975. The structure of the operculum in Pileolaria (Pileolaria) granulata (L.) ( Polychaeta: Serpulidae) and related species J. exp. mar. Biol. Ecol. 20: 215–235.

    Google Scholar 

  • Ten Hove, H. A., 1984. Towards a phylogeny in serpulids (Annelida, Polychaeta). In Hutchings, P. A. (ed.), Proceedings of the First International Polychaete Conference. Linnean Society of New South Wales, Sydney: 181–196.

    Google Scholar 

  • Uchida, H., 1978. Serpulid tube worms ( Polychaeta, Sedentaria) from Japan with the systematic review of the group. Bull. mar. Park Res. St. 2: 2–98.

    Google Scholar 

  • Wray, G. A., 1995. Evolution of larvae and developmental modes. In McEdward, L. R. (ed.), Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, Florida: 413–448.

    Google Scholar 

  • Wray, G. A., 1996. Parallel evolution of non-feeding larvae in echinoids. Syst. Biol. 45: 308–322.

    Google Scholar 

  • Wray, G. A. & A. E. Bely, 1994. The evolution of echinoderms is driven by several distinct factors. Development 1994 (Suppl.): 97–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kupriyanova, E.K. (2003). Live history evolution in Serpulimorph polychaetes: a phylogenetic analysis. In: Sigvaldadóttir, E., et al. Advances in Polychaete Research. Developments in Hydrobiology, vol 170. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0655-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0655-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6361-8

  • Online ISBN: 978-94-017-0655-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics