Skip to main content

Combinatorial Representation Theory and Crystal Bases

  • Conference paper
Proceedings of the Third International Algebra Conference
  • 248 Accesses

Abstract

Let F be a field and A be an associative algebra over F. For instance, we may take A to be the group algebra F[G] of a group G or the universal enveloping algebra U(g) of a Lie algebra g. Let V be an F-vector space. By a representation of A on V, we mean an algebra homomorphism ø: AEnd(V). In this case, V becomes an A-module with the A-action given by

EquationSource % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgw % Sixlabe27aUjabg2da9iabew9aMjaacIcacaWGHbGaaiykaiaacIca % cqaH9oGBcaGGPaacbaGaa8hiaiaa-zgacaWFVbGaa8NCaiaa-bcaca % WFHbGaa8hBaiaa-XgacaWFGaGaamyyaiabgIGiolaadgeacaGGSaGa % eqyVd4MaeyicI4SaamOvaiaac6caaaa!5315! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ a \cdot \nu = \phi (a)(\nu ) for all a \in A,\nu \in V. $$

.

This research was supported by KOSEF Grant #98-0701-01-5-L and the Young Scientist Award, Korean Academy of Science and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ariki, On decomposition number of Hecke algebra of G(m, 1, n), J. Math. Kyoto Univ. 36 (1996), 789–808.

    MathSciNet  MATH  Google Scholar 

  2. J. Brundan, A. Kleshchev, Hecke-Clifford superalgebras, crystals of type A21(2) and modular branching rules for S n, preprint (2001).

    Google Scholar 

  3. R. Dipper, G. James, Representations of Hecke algebras of the general linear group, Proc. Lond. Math. Soc. 52 (1986), 20–52.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Dipper, G. James, Blocks and idempotents of the Hecke algebra of the general linear group, Proc. Lond. Math. Soc. 54 (1987), 57–82.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Grojnowski, Affine sl p controls the modular representation theory of the symmetric group and related Hecke algebras, preprint (1999).

    Google Scholar 

  6. T. Hayashi, q-analogue of Clifford and Weyl algebras — spinor and oscillator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129–144.

    Article  Google Scholar 

  7. J. Hong, S.-J. Kang, Crystal graphs for basic representations of the quantum affine algebra U q(C2(1)), in Representations and Quantizations, Proceedings of the International Conference on Representation Theory, July 1998, Shanghai, China Higher Education Press and Springer-Verlag (2000), 213–228.

    Google Scholar 

  8. J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics 42, American Mathematical Society, 2002.

    Google Scholar 

  9. M. Jimbo, K. C. Misra, T. Miwa, M. Okado, Combinatorics of representations of Uq(sl(n)) at q = 0, Commun. Math. Phys. 136 (1991), 543–566.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 3rd ed., 1990.

    Google Scholar 

  11. S.-J. Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, RIM-GARC preprint 00–2 (2000), to appear in Proc. Lond. Math. Soc.

    Google Scholar 

  12. S.-J. Kang, J.-A. Kim, H. Lee, D.-U. Shin, Young wall realization of crystal bases for classical Lie algebras, KIAS preprint M-01006 (2001).

    Google Scholar 

  13. M. Kashiwara, Crystallizing the q-analogue of universal enveloping algebras, Commun. Math. Phys. 133 (1990), 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

    MathSciNet  MATH  Google Scholar 

  15. A. Lascoux, B. Leclerc, J-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys. 181 (1996), 205–263.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. E. Littlewood, A. R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London, Ser. A 233 (1934), 99–142.

    Article  Google Scholar 

  17. G. Lusztig,Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Misra, T. Miwa, Crystal base for the basic representation of Uq(sl(n)), Commun. Math. Phys. 134 (1990), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Robinson, On representations of the symmetric group, Amer. J. Math. 60 (1938), 745–760.

    Article  Google Scholar 

  20. H. Weyl, Classical Groups, 2nd ed., Princeton University Press, 1946.

    Google Scholar 

  21. A. Young, On quantitative substitutional analysis II, Proc. Lond. Math. Soc. (1) 34 (1902), 361–397.

    MATH  Google Scholar 

  22. A. Young, On quantitative substitutional analysis III, Proc. Lond. Math. Soc. (2) 28 (1927), 255–291.

    Google Scholar 

  23. A. Young, On quantitative substitutional analysis IV, Proc. Lond. Math. Soc. (2) 31 (1902), 253–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kang, SJ. (2003). Combinatorial Representation Theory and Crystal Bases. In: Proceedings of the Third International Algebra Conference. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0337-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0337-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6351-9

  • Online ISBN: 978-94-017-0337-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics