Skip to main content
  • 257 Accesses

Abstract

A division ring, or skew-field, satisfies all the axioms of a field except (possibly) commutativity of multiplication. The center of a division algebra D is a field, which we always denote as F. Thus D is a vector space over F. This paper focuses on the case [D : F] < ∞; then we call D a division algebra. Division rings arise in several ways:

  1. (1)

    By Schur’s lemma, the endomorphism ring of an arbitrary simple module is a division ring.

  2. (2)

    Goldie proved every noncommutative Noetherian domain is Ore, and thus has a classical ring of quotients which is a division ring. This applies for example to enveloping algebras of finite dimensional Lie algebras, and group algebras of torsion-free polycyclic-by-finite groups, rings of differential operators of nonsingular complex algebraic varieties, and other rings of current research interest in mathematics and physics.

  3. (3)

    Many non-Noetherian domains also can be embedded in division rings, e.g. the free ring, and enveloping algebras of arbitrary Lie algebras.

  4. (4)

    By the Wedderburn-Artin theorem, every simple Artinian ring is isomorphic to a matrix ring over a division ring. In particular, any finite dimensional semisimple algebra R can be written as a direct product of matrix rings EquationSource % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa % aaleaacaWG0bGaamyAaaqabaGccaGGOaGaamiramaaBaaaleaacaWG % PbaabeaakiaacMcacaGGSaaaaa!3CD9! ]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ {M_{ti}}({D_i}), $$, for suitable division algebras D i (determined uniquely up to isomorphism). Thus division algebras arise in group representation theory, via Maschke’s theorem.

  5. (5)

    Quadratic forms give rise to Clifford algebras, which are simple algebras, and more generally division algebras come up in the study of homogeneous forms over non-algebraically closed fields.

  6. (6)

    Division algebras tie in to algebraic geometry through Brauer-Severi varieties.

  7. (7)

    The Steinberg symbols of K-theory are intimately connected with cyclic algebras.

  8. (8)

    Division algebras arise in forms of algebraic groups defined over nonalgebraically closed fields.

  9. (9)

    Any Desarguian projective plane can be coordinatized in terms of a suitable division ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, A.A., New results on associative division algebras, J. Algebra 5 (1967), 110–132.

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, A.A., On associative division algebras, Bull. Amer. Math. Soc. 74 (1968), 438–454.

    Article  MathSciNet  MATH  Google Scholar 

  3. Albert, A.A., Structure of algebras. Amer. Math. Soc. Colloq. Pub. 24, 1961

    Google Scholar 

  4. Altmann, S.L., Hamilton, Rodriguez, and the quaternion scandal, Math. Mag. 62 (1989), 291–308.

    Article  MathSciNet  MATH  Google Scholar 

  5. Amitsur, S.A., On central division algebras, Israel J. Math. 12 (1972), 408–420.

    Article  MathSciNet  MATH  Google Scholar 

  6. Amitsur, S.A., Galois splitting fields of a universal division algebra, J. Algebra 143 (1991), 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  7. Amitsur, S.A., Highlights in the history of finite dimensional central division algebras, in Israel Math. Conference Proceedings, vol. 1. Amer Math. Soc., 1989.

    Google Scholar 

  8. Amitsur, S.A. and Saltman D., On central division algebras, Israel J. Math. 12 (1972), 408–420.

    Article  MathSciNet  MATH  Google Scholar 

  9. Brauer, R., Uber Systeme hyperkomplexer Zahlen Math Z. 30 (1929), 79–107.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brauer, R., Uber den index und den expotenten von divisionsalgebren, Tohuko Math J. 37 (1933), 77–87.

    Google Scholar 

  11. Buhler J. and Reichstein Z., On the Essential Dimension of a Finite Group, Compositio Math. 106 (1997), 159–179.

    Article  MathSciNet  MATH  Google Scholar 

  12. De Jong, A.J., The period-index problem for the Brauer group of an algebraic surface. Available from http://www.math.mit.edu/-.dejong

    Google Scholar 

  13. Dickson, L.E., Associative algebras and abelian equations, Trans. Amer. Math. Soc. 15 (1914), 31–46.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dickson, L.E., New division algebras, Trans. Amer. Math. Soc. 28 (1926), 207–234.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dickson, L.E., Construction of division algebras, Trans. Amer. Math. Soc. 32 (1932), 319–314.

    Article  Google Scholar 

  16. Frobenius, G., Uber die Darstellung der endlichen Gruppen durch linearen Substitutionen, Berlin Akad. (1897).

    Google Scholar 

  17. Gauss, C.F. Werke. Konigliche Gesellschaft der Wissenschaften, vol. 8., Gottingen 1863–1929. (pp. 357–362 ).

    Google Scholar 

  18. Greenberg, M. Lectures on forms in many Variables. Benjamin, New York, 1969.

    Google Scholar 

  19. Hamilton, W.R., On quaternions; or a new system of imaginaries in algebra, Phil. Mag. 3rd ser. 25 (1844), 424–434.

    Google Scholar 

  20. Jacob, B. and Wadsworth, A., Division algebras over Henselian fields, J. Algebra 128 (1990), 126–179.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jacobson, N., Brauer factor sets, Noether factor sets, and crossed products, in Emmy Nother, a Tribute to her Life and Work (eds. J. Brewer, M. Smith ). 1981.

    Google Scholar 

  22. Jacobson, N. Finite-dimensional division algebras over fields. Springer, 1996.

    Google Scholar 

  23. Lang, S., On the quasi-algebraic closure, Annals of Math. 55 (1952), 373–390.

    Article  MATH  Google Scholar 

  24. Knus M.-A., Merkurjev A., Rost M. and Tignol J.-P., The Book of Involutions. Amer. Math. Soc. Colloq. Pub. 44. Amer. Math. Soc. 1998.

    MATH  Google Scholar 

  25. Lemire, N., In preparation.

    Google Scholar 

  26. Lorenz, M., Rechstein, Z., Rowen, L., and Saltman, D. The field of definition of a division algebra. Submitted.

    Google Scholar 

  27. Merkuriev A., Essential dimension. UCLA lecture notes 2000.

    Google Scholar 

  28. Merkuriev and Suslin, A., K-cohomologies of Sevri-Brauer varieties and norm residue homomorphisms, Izv. Akad. Nauk. SSSR 46, 1011–1046.

    Google Scholar 

  29. Reichstein, Z., On a theorem of Hermite and Joubert, Gonad. J. Mathematics 51 (1999), 69–95.

    MathSciNet  MATH  Google Scholar 

  30. Reichstein, Z., On the notion of essential dimension for algebraic groups, Transformation groups 5 (2000), 265–304.

    Article  MathSciNet  MATH  Google Scholar 

  31. Reichstein, Z. and Youssin, B., Essential dimensions of algebraic groups, and a resultion theorem for G-varieties, with an appendix by J. Kollar and E. Szabo, Canad. J. Mathematics 52 (2000), 1018–1056.

    Article  MathSciNet  MATH  Google Scholar 

  32. Reichstein Z. and Youssin, B., Splitting fields of G-varieties, Pacific Journal of Mathematics 200 (2001), 207–249.

    Article  MathSciNet  MATH  Google Scholar 

  33. Rodriguez, O., Des lois geometriques qui regissent les deplacements d’une systeme solide dans l’espace, et la variation des coordonnees provenant de ses deplacements consideres independamment des causes quiveuvent les produire, Journal de Math. Pure et Appliquees 5 (1840), 380–440.

    Google Scholar 

  34. Rosset, S, and Tate, J., A reciprocity law for K2-traces, Comment. Math. Helv. 58, 38–47.

    Google Scholar 

  35. Rost, M., Computations of some essential dimensions. Preprint.

    Google Scholar 

  36. Rost, M., Serre, J.P., and Tignol, J.P., The trace form of a central simple algebra of degree 4. Preprint.

    Google Scholar 

  37. Rowen, L.H., Polynomial Identities in Ring Theory. Pure and Applied Mathematics 83. Academic Press, Boston, 1980.

    MATH  Google Scholar 

  38. Rowen, L.H., Brauer factor sets, Trans. Amer. Math. Soc. 282 (1984), 765–772.

    Article  MathSciNet  MATH  Google Scholar 

  39. Rowen, L.H., Division algebras over C2 and C3-fields, Proc. Amer. Math. Soc. (2001).

    Google Scholar 

  40. Rowen, L.H. and Saltman, D., Semidirect product division algebras, Israel J. Math. 96 (1996), 527–552.

    Article  MathSciNet  MATH  Google Scholar 

  41. Saltman, D.J., Lectures on division algebras. Amer. Math. Soc. CBS Reg. Conf. Ser. in Math. vol. 94, 1999.

    Google Scholar 

  42. Serre J.-P., Corps Locaux. Hermann 1962.

    Google Scholar 

  43. Serre J.-P., Galois Cohomology. Springer 1997.

    Google Scholar 

  44. Tate, J., Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257–274.

    Article  MathSciNet  MATH  Google Scholar 

  45. Tignol, J.P. and Amitsur, S.A., Totally ramified splitting fields of central simple algebras over Henselian fields, J. Algebra 98 (1986), 95–101.

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsen, C., Zur Stufentheorie der Quasi-algebraisch-Abgeschloosenheit kommutativer Korper, J. Chinese Math. Soc. 1 (1936), 81–92.

    Google Scholar 

  47. Wedderburn, H.M.S., On hypercomplex numbers. Proc. London Math. Soc. (2) 6 (1907), 77–118.

    MathSciNet  Google Scholar 

  48. Wedderburn, H.M.S., A type of primitive algebra. Trans. Amer. Math. Soc. 15 (1914), 162–166.

    Article  MathSciNet  MATH  Google Scholar 

  49. Wedderburn, H.M.S., On division algebras, Trans. Amer. Math. Soc. 22 (1921), 129–135.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rowen, L.H. (2003). Division Algebras. In: Proceedings of the Third International Algebra Conference. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0337-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0337-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6351-9

  • Online ISBN: 978-94-017-0337-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics