Skip to main content

Assay, extraction and subcellular fractionation

  • Chapter
A Guide to Protein Isolation

Part of the book series: Focus on Structural Biology ((FOSB,volume 3))

  • 327 Accesses

Abstract

The object of extraction procedures is to get the proteins of interest out of the cellular material where they occur and into solution where they may be manipulated. The distribution of the protein(s) of interest is determined by an assay, so one of the first steps necessary is the development of a suitable assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dennison, C. (1988) A simple and universal method for making up buffer solutions. Biochem. Educ. 16, 210–211.

    Article  CAS  Google Scholar 

  2. Ellis, K. J. and Morrison J. F. (1982) Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol. 87, 405–426.

    Article  PubMed  CAS  Google Scholar 

  3. Scopes, R. K. (1994) Protein Purification: Principles and Practice. 3rd Ed, Springer-Verlag, New York, pp 326–330.

    Google Scholar 

  4. Dehrmamn, F. M., Coetzer, T. H. T., Pike, R. N. and Dennison, C. (1995) Mature cathepsin L is substantially active in the ionic milieu of the extracellular matrix. Arch. Biochem. Biophys. 324, 93–98.

    Article  Google Scholar 

  5. Perrin, D. D. and Dempsey, B. (1974) Buffers for pH and metal ion control. Chapman and Hall, London.

    Google Scholar 

  6. Segel, I. H. (1976) in Biochemical Calculations, 2nd Ed, John Wiley and Sons, London.

    Google Scholar 

  7. Eisenthal, R. and Cornish-Bowden, A. (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139, 715–720.

    PubMed  CAS  Google Scholar 

  8. Groves, W. E., Davis, F. C. and Sells, B. H. (1968) Spectrophotometric determination of microgram quantities of protein without nucleic acid interference. Anal. Biochem. 22, 195–210.

    Article  PubMed  CAS  Google Scholar 

  9. Itzhaki, R. F. and Gill, D. M. (1964) A micro-biuret method for estimating protein. Anal. Biochem. 9, 401–410.

    Article  PubMed  CAS  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Fan, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  11. Folin, O. and Ciocalteu, V. (1927) Tyrosine and tryptophan determination in proteins. J. Biol. Chem. 73, 627–650.

    CAS  Google Scholar 

  12. Peterson, G. L. (1979) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Fan and Randall. Anal. Biochem. 100, 201–220.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, P. K., Krohn, R. I., Hennanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fugimoto, E. K., Goeke, N. M., Olsen, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  14. Wiechelman, K. J., Braun, R. D. and Fitzpatrick, J. D. (1988) Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal. Biochem. 175, 231–237.

    Article  PubMed  CAS  Google Scholar 

  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  16. Read. S. M. and Northcote, D. H. (1981) Minimization of variation in the response to different proteins of the Coomassie Blue dye-binding assay for protein. Anal. Biochem. 116, 53–64.

    Article  PubMed  CAS  Google Scholar 

  17. Dennison, C. Moohnan, L., Pillay, C. S. and Meinesz, R. E. (2000) Use of 2methylpropan-2-ol to inhibit proteolysis and othery protein interactions in a tissue homogenate: an illustrative application to the extraction of cathepsins B and L from liver tissue. Anal. Biochem. 284, 157–159.

    Article  Google Scholar 

  18. Storrie, B. and Madden, E. A. (1990) Isolation of subcellular organelles. Methods Enzymol. 182, 203–225.

    Article  PubMed  CAS  Google Scholar 

  19. Chervenka, C. H. (1969) A manual of methods for the ultracentrifuge. Beckman Instruments Inc., Palo Alto.

    Google Scholar 

  20. Coombs, D. H. and Watts, R. M. (1985) Generating sucrose gradients in three minutes by tilted tube rotation. Anal. Biochem. 148, 254–259.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dennison, C. (2003). Assay, extraction and subcellular fractionation. In: A Guide to Protein Isolation. Focus on Structural Biology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0269-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0269-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6266-6

  • Online ISBN: 978-94-017-0269-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics