Skip to main content

Fuzzy Reals: Topological Results Surveyed, Brouwer Fixed Point Theorem, Open Questions

  • Chapter
Topological and Algebraic Structures in Fuzzy Sets

Part of the book series: Trends in Logic ((TREN,volume 20))

  • 457 Accesses

Abstract

There is no doubt that the L-reals ℝ (L) and, in particular, the unit L-interval I(L) are among the most important and canonical examples of L-topological spaces. These two spaces have a particularly well-established theory within the framework of the, so to say, classical fuzzy topology (as originated by Chang [1], Goguen [3], and Hutton [7, 8]). It is presently a part of so-called fixed-basis fuzzy topology (cf. Höhle [4] and Höhle and Šostak [5]) and even more a part of variable-basis fuzzy topology (cf. Rodabaugh [31] and Section 7 of [32]).

Partially supported by UPV: 127.310-EA018/99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C L Chang, Fuzzy topological spaces, J. Math. Anal Appl. 24(1968), 182190.

    Google Scholar 

  2. T.E. Gantner, R.C. Steinlage, R.H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547–562.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734–742.

    Article  MathSciNet  MATH  Google Scholar 

  4. U. Höhle, Many Valued Topology And Its Applications, Kluwer Academic Publishers (Boston/Dordrecht/London), 2001.

    Google Scholar 

  5. U. Höhle, A. P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology,Chapter 3 in [6], 123–272.

    Google Scholar 

  6. U. Höhle, S. E. Rodabaugh, eds, Mathematics Of Fuzzy Sets: Logic, Topology, And Measure Theory, The Handbooks of Fuzzy Sets Series: Volume 3(1999), Kluwer Academic Publishers (Boston/Dordrecht/London).

    Google Scholar 

  7. B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975), 74–79.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977), 559–571.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Hutton, Products of fuzzy topological spaces, Topology Appl. 11 (1980), 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Hutton, I. L. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets Syst. 3 (1980), 93–104.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. G. Johnson, M. Mandelker, Separating chains in topological spaces, J. London Math. Soc. (2), 4 (1972), 510–512.

    Article  MATH  Google Scholar 

  12. A.K. Katsaras, Fuzzy proximities and fuzzy completely regular spaces I, Anal. Stiin. Univ. “Al. I. Cuza” Iasi 26 (1980), 31–41.

    MathSciNet  Google Scholar 

  13. T. Kubiak, Extending continuous L-real functions, Math. Japon. 31 (1986), 875–887.

    MathSciNet  MATH  Google Scholar 

  14. T. Kubiak, L-fuzzy normal spaces and Tietze extension theorem, J. Math. Anal. Appl. 125 (1987), 141–153.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kubiak, Notes on the topological modification of the L-fuzzy unit interval, Communications IFSA Math. Chapter 4 (1989), 26–30.

    Google Scholar 

  16. T. Kubiak, The topological modification of the L-fuzzy unit interval,Chapter 11 in [35], 275–305.

    Google Scholar 

  17. T. Kubiak, A strengthening of the Katétov-Tong insertion theorem, Comment. Math. Univ. Carolinae 34 (1993), 357–362.

    MathSciNet  MATH  Google Scholar 

  18. T. Kubiak, Are higher fuzzy separation axioms good extensions?, Quaest. Math. 16 (1993), 443–451.

    MathSciNet  MATH  Google Scholar 

  19. T. Kubiak, On L-Tychonoff spaces, Fuzzy Sets Syst. 73 (1995), 25–53.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kubiak, The fuzzy Brouwer fixed-point theorem, J. Math. Anal. Appl. 222 (1998), 62–66.

    Article  MathSciNet  Google Scholar 

  21. T. Kubiak, Separation axioms: extensions of mappings and embedding of spaces,Chapter 6 in [6], 433–479.

    Google Scholar 

  22. T. Kubiak, L-fuzzy reals and topology,Math. Japon. (Mathematical Plaza), to appear.

    Google Scholar 

  23. T. Kubiak, M.A. de Prada Vicente, On internal characterizations of completely L-regular spaces, J. M.th. Anal. Appl. 216 (1997), 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Kubiak, M. A. de Prada Vicente, Some questions in fuzzy topology, Fuzzy Sets and Systems 105 (1999), 277–285.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Kubiak, D. Zhang, On the L-fuzzy Brouwer fixed point theorem, Fuzzy Sets and Systems 105 (1999), 287–292.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu Ying-Ming, Pointwise characterization of complete regularity and imbedding theorem in fuzzy topological spaces,Scientia Sinica, Series A, 26(1983), 138–147.

    Google Scholar 

  27. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621–633.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Mardones Pérez, Higher separation axioms in L-topological generated I (L)-topological spaces,submitted.

    Google Scholar 

  29. D. Papert Strauss, Topological lattices, Proc. London Math. Soc. 18 (1968), 217–230.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. E. Rodabaugh, Suitability in fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981), 273–285.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. E. Rodabaugh, A point-set lattice-theoretic framework T for topology which contains LOC as a subcategory of singleton spaces and in which there are general classes of Stone Representation and Compactification Theorems, First printing February 1986, Second printing April 1987, Youngstown State University Printing Office (Youngstown, Ohio(USA)).

    Google Scholar 

  32. S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [6], 273–388.

    Google Scholar 

  33. S. E. Rodabaugh, Separation axioms: representation theorems, compactness, and compactifications, Chapter 7 in [6], 481–552.

    Google Scholar 

  34. S. E. Rodabaugh, Fuzzy real lines and dual real lines as poslat topological, uniform, and metric ordered semirings with unity,Chapter 10 in [6], 607631.

    Google Scholar 

  35. S. E. Rodabaugh, E.P. Klement, U. Höhle, eds, Applications Of Category Theory To Fuzzy Subsets, Theory and Decision Library—Series B: Mathematical and Statistical Methods, Volume 14, Kluwer Academic Publishers (Boston/Dordrecht/London), 1992.

    Google Scholar 

  36. A.P. Sostak, Two decades of fuzzy topology: basic ideas, notions and results,Russian Math. Surveys 4:6(1989) 125–186.

    Google Scholar 

  37. A.P. Sostak, On the concept of E-regularity for fuzzy topology, Mat. Vesnik 41: 3 (1989), 189–203.

    MathSciNet  Google Scholar 

  38. E. F. Steiner, Normal families and completely regular spaces, Duke Math. J. 33 (1966), 743–745.

    MathSciNet  MATH  Google Scholar 

  39. Zhang Dexue, Liu Ying-Ming, L-fuzzy modification of completely distributive lattices, Math. Nachr. 168 (1994), 79–95.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kubiak, T. (2003). Fuzzy Reals: Topological Results Surveyed, Brouwer Fixed Point Theorem, Open Questions. In: Rodabaugh, S.E., Klement, E.P. (eds) Topological and Algebraic Structures in Fuzzy Sets. Trends in Logic, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0231-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0231-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6378-6

  • Online ISBN: 978-94-017-0231-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics