Skip to main content
  • 508 Accesses

Abstract

Most Archean organic matter has been subjected to a high degree of alteration by thermal processes, often involving very high temperatures. The original morphology of possible organisms and their biochemical make up have been altered to such an extent that in many cases they are unidentifiable. There is, therefore, great difficulty and often uncertainty when trying to identify or compare Archean microorganisms with modern day analogues. On the other hand microbial populations have changed little over the geological time scale and may be the only organic remains to be positively identified. Their small size may enable them to be spared destruction when squeezed into microcavities in the organic and mineral matrix. Microorganisms such as bacteria may also be preserved due to incorporated or substituted metals, as documented in earlier studies (Degens and Ittekkot, 1982).

‘As happens in the case of an optical microscope, which is incapable of revealing the ultimate structure of matter to the observer, we can only choose between various degrees of enlargement; each one reveals a level of organization which has no more than a relative truth and, while it lasts, excludes the perception of other levels.’

Claude Levi-Strauss

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, C.E. (1991) Implications for organic maturation studies of evidence for a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Pieto geothermal system. Am. Assoc. Petrol. Geol. Bull. 75: 1852–1863.

    Google Scholar 

  • Bauer, M.E., Hayes, J.M., Studley, S.A. and Walter, M.R. (1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80: 270–282.

    Article  Google Scholar 

  • Becker, L, Poreda, R.J. and Bada, J.L. (1996) Extraterrestrial helium trapped in fullerenes in the Sudbury impact structure. Science. 272: 249–252.

    Article  Google Scholar 

  • Beukes, N.J. and Klein, C. (1992) Model for iron-formation deposition. In: J.W. Schopf and C. Klein (eds). The Proterozoic Biosphere, Cambridge University Press, Cambridge: 147–151.

    Google Scholar 

  • Breger, I.A., Zubovic, P., Chandler, J.C. and Clarke, R.S. (1972) Occurrence and significance of formaldehyde in Allende carbonaceous chondrite. Nature. 236: 155–158.

    Article  Google Scholar 

  • Buick, R. and Dunlop, J.S.R. (1990) Evaporitic sediments of Early Archaen age from the Warrawoona Group, North Pole, Western Australia. Sedimentology. 37: 247–277.

    Article  Google Scholar 

  • Buseck, P.R., Bo-Jun, H. and Miner, B. (1988) Structural order and disorder in Precambrian kerogens. Org . Geochem. 12: 221–234.

    Google Scholar 

  • Cheney, E.S. (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res. 79: 3–24.

    Article  Google Scholar 

  • Daniel, R., Morgan, H. and Hudson. J.A. (1987) Superbugs spring from hot water. New Sci. 19 February: 36–40.

    Google Scholar 

  • Deamer, D.W., Harang-Mahon, E. and Bosco, G. (1994) Self-assembly and function of primitive membrane structures: In: S. Bengston (ed.) Early Life on Earth. Nobel Symposium No. 84. Columbia University Press, New York.

    Google Scholar 

  • Degens, E.T. and Ittekkot, V. (1982) In-situ metal-staining of biological membranes in sediments. Nature. 298: 262–264.

    Google Scholar 

  • Ewers, W.E. and Morris, R.C. (1981) Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Econ. Geol. 76: 1929–1953.

    Article  Google Scholar 

  • Ferris, F.G., Beveridge, T.J. and Fyfe, W.S. (1986) Iron—silica crystallite nucleation by bacteria in a geothermal sediment. Nature. 320: 609–615.

    Article  Google Scholar 

  • Gieskes, J.M., Simoneit, B.R.T., Brown, T., Shaw T., Wang, Y-Ch. and Magrenhein, A. (1988) Hydrothermal fluids and petroleum in surface sediments of Guaymas Basin, Gulf of California: A case study. Can. Mineral. 26: 589–602.

    Google Scholar 

  • Gize, A.P. (1986) The development of a thermal mesophase in bitumen from high temperature ore deposits. In: W.E. Dean (ed.) Organics and Ore Deposits. Proceedings Denver Region Exploration Geological Society Symposium. Denver Region Exploration Geologists Society: 137–150.

    Google Scholar 

  • Glikson, A.Y. (1993) Asteroids and early Precambrian crustal evolution. Earth-Sci. Rev. 35: 285–319. Glikson, A.Y. (1996) Mega-impacts and mantle melting episodes: tests of possible correlations. Aust. Geol. Org. (AGSO) J. 16: 587–608.

    Google Scholar 

  • Glikson, M. (1984) 3.5 billion year-old bacteria: earliest life forms? reported by Monastersky in: Science News. Washington; December issue.

    Google Scholar 

  • Glikson, M. and Taylor, G.H. (1986) Cyanobacterial mats; major contributors to the organic matter in Toolebuc Formation oil shales. J. Geolog. Soc. Aust. Sp. Publ. 12: 276–286.

    Google Scholar 

  • Glover, J.E. (1992) Sediments of Early Archaen coastal plains: a possible environment for the origin of life. Precambrian Res. 56: 159–166.

    Article  Google Scholar 

  • Hayes, J.M., Kaplan, I.R. and Wedeking, K.W. (1983) Precambrian organic geochemistry, preservation of the record. In J.W. Schopf (ed.) Earth’s Earliest Biosphere: 93–134. Princeton University Press.

    Google Scholar 

  • Henley, R.W. (1996) Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactions for the early development of life and hydrothermal ecosystems. Ciba Found. Symp. 202: 61–82.

    Google Scholar 

  • Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: Results from experiments in space. Origins Life Evol. Biosphere. 23: 37–52.

    Article  Google Scholar 

  • Jeffrey, D. (1985) Nat. Geogr. Mag. 168: 182.

    Google Scholar 

  • Juniper, S.K. and Fouquet, Y. (1988) Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26: 859–869.

    Google Scholar 

  • Knoll, A.H. and Walter, M.R. (1996) The limits of palaeontological information: finding the gold among the dross. In: Evolution of Hydrothermal Ecosystems on Earth (And Mars?): 198–220. Wiley liuya Sons.

    Google Scholar 

  • Lowe, D.R. (1980) Stromatolites 3400-Myr old from the Archean of Western Australia. Nature. 284: 441–443.

    Article  Google Scholar 

  • Lowe, D.R., Byerly, G.R., Asaro, F. and Kyte, F.J. (1989) Geological and geochemical record of 3400-million year-old terrestrial meteorite impacts. Science. 245: 959–962.

    Article  Google Scholar 

  • Lawless, J.G. and Boynton, C.D. (1973) Thermal synthesis of amino acids from a simulated primitive atmosphere. Nature. 243: 405–407.

    Article  Google Scholar 

  • Mackinnon, I.D.R. and Rietmeijer, F.M. (1987) Mineralogy of chondritic interplanetary dust particles. Rev. Geophys. 25: 1527–1553.

    Article  Google Scholar 

  • Mann, S., Hannington, J.P. and Williams, R.J.P. (1986) Phospholipid vesicles as a model system for biomineralization. Nature. 324: 565–567.

    Article  Google Scholar 

  • Margulis, L., Dyer Grosovsky, B.D., Stolz, J.F., Gong-Collins, E.J., Lenk, S., Read, D. and Lopez-Cortes, A. (1983): Distinctive microbial structures and the pre-phanerozoic fossil record. Precambrian Research, 20: 443–447.

    Article  Google Scholar 

  • McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Hajatollah, V. et al. (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science. 273: 924–930.

    Article  Google Scholar 

  • Morris, R.C. and Horwitz, R.C. (1983) The origin of the iron-formation-rich Hamersley Group of Western Australia-deposition on a platform. Precambrian Res. 21: 273–297.

    Article  Google Scholar 

  • Oberlin, A., Boulmier, J.L. and Villey, M. (1980) Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen. In: B. Durand (ed.) Kerogen. Editions Technip, Paris, pp. 1919–241.

    Google Scholar 

  • Ourisson, G. (1994) Biomarkers in the Proterozoic record. In: Bengtson (ed.) Early Life on Earth. Nobel Symposium No. 84. Columbia U.P., New York, pp. 259–265.

    Google Scholar 

  • Pardue, J.W., Scalan, R.S., Van Baalen, C. and Parker, P.L. (1976) Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Acta. 40: 309–312.

    Article  Google Scholar 

  • Philp, R.P. (1985) GC-MS of North Pole kerogen, unpublished data.

    Google Scholar 

  • Robert, P. (1988) Organic Metamorphism and Geothermal History. Elf-Aquitaine and D. Reidel.

    Google Scholar 

  • Nature of organic matter in the early Proterozoic, earliest life forms and metal associations

    Google Scholar 

  • Schopf, J.W. and Walter, M.R. (1983) Archean microfossils: new evidence of ancient microbes. In: J.W. Schopf (ed.) Earth’s Earliest Biosphere. Princeton University Press, pp. 214–239.

    Google Scholar 

  • Shimoyama, A., Harada, K. and Yanai, K. (1985) Amino acids from outer space. Reported in New Sci. 19/26, December 1985.

    Google Scholar 

  • Simoneit, B.R.T. (1985) Hydrothermal petroleum: genesis, migration and deposition in Guaymas Basin, Gulf of California. Can. J. Earth Sci. 22: 1919–1929.

    Article  Google Scholar 

  • Simoneit, B.R.T. (1988) Petroleum generation in submarine hydrothermal systems: an update. Can. Mineral. 26: 827-–840.

    Google Scholar 

  • Simonson, B.M. (1992) Geological evidence for a strewn field of impact spherules in the early Precambrian Hamersley Basin of Western Australia. Geol. Soc. Am. Bull. 104: 829–839.

    Article  Google Scholar 

  • Smith, P.P.K. and Buseck, P.R. (1981) Graphitic carbon in the Allende meteorite: A microstructural study. Science. 212: 322–324.

    Article  Google Scholar 

  • Stach, E., Mackowsky, M. Th., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. 1975: Coal Petrology, Gebruder Borntraeger, Berlin. 311 pp.

    Google Scholar 

  • Stetter, K.O. (1996) Hyperthermophiles in the history of life. Ciba Found. Symp. 202: 1–11.

    Google Scholar 

  • Sugitani, K. (1992) Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica. Precambrian Res. 57: 21–47.

    Article  Google Scholar 

  • Sumner, D.Y. and Bowering, S.A. (1996) U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res. 79: 25–35.

    Article  Google Scholar 

  • Walter, M.R. (1994) The earliest life on earth clues to finding life on Mars. Search. 25: 117–119.

    Google Scholar 

  • Walter, M.R. (1996) Ancient hydrothermal ecosystems on Earth: a new palaeobiological frontier. Ciba Found. Symp. 202: 112–127.

    Google Scholar 

  • Walter, M.R., Buick, R. and Dunlop, J.S.R. (1980) Stromatolites 3400–3500 Mys old from the North Pole area, Western Australia. Nature. 284: 443–445.

    Article  Google Scholar 

  • Yanagawa, H. and Kojima, K. (1985) Thermophilic microspheres of peptide-like polymers and silicates formed at 250 degrees C. J. Biochem. 97: 1521–1524.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glikson, M., Taylor, D. (2000). Nature of organic matter in the early Proterozoic, earliest life forms and metal associations. In: Glikson, M., Mastalerz, M. (eds) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9474-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9474-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4019-0

  • Online ISBN: 978-94-015-9474-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics