Skip to main content

Part of the book series: Proceedings of the Phythochemical Society of Europe ((PPSE,volume 45))

  • 973 Accesses

Abstract

Plants produce a diverse array of secondary metabolites, many of which can inhibit the growth of microbes in vitro,leading to speculation that such molecules may protect plants against attack by pathogens (for review see [1]). Investigations of the contribution of antimicrobial compounds to plant defence have focussed mainly on phytoalexins, because these molecules are actively synthesized in and around the site of attempted infection as part of the array of induced defence responses associated with disease resistance. By definition, phytoalexins are absent from healthy plants, and accumulate only in response to pathogen attack or stress [2,3]. Recent evidence indicates that some phytoalexins can indeed act as antimicrobial phytoprotectants. For example, the ability of pea- and chickpea-infecting isolates of the fungus Nectria haematococca to detoxify host plant phytoalexins has been shown to be important for full virulence [4,5], and experiments in which levels of phytoalexins in plants have been altered, either by the generation of mutants or by transformation-mediated manipulation of gene expression, have provided evidence to link phytoalexins with disease resistance [6–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morrissey, J.P. and Osboum, A.E. (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. BioL Revs. 63, 708–724.

    CAS  Google Scholar 

  2. Müller, K.O. and Barger, H. (1940) Experimentelle untersuchungen uber die Phytophthora-resistenz der kartoffel. Arb. Biol. Reichsasnstalt. Landw. Forstw. Berlin 23, 189–23.

    Google Scholar 

  3. Paxton, J. D. (1981) Phytoalexins–a working redefinition. Phytopathol. Z. 101, 106–109.

    Article  Google Scholar 

  4. Wasmann, C. C. and VanEtten, H.D. (1996) Transformation-mediated chromosome loss and disruption of a gene for pisatin demethylase decrease the virulence of Nectria haematococca on pea. Mol. Plant-Microbe Interact. 9, 793–803.

    Article  CAS  Google Scholar 

  5. Enkerli, J., Bhatt, G. and Covert, S.F. (1998) Maackiain detoxification contributes to the virulence of Nectria haematococca MP VI on chickpea. Mol. Plant-Microbe Interact., 11, 317–326.

    Article  CAS  Google Scholar 

  6. Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kindl, H., Vomam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stocker, R.H. and Stenzel, K. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156.

    Google Scholar 

  7. Glazebrook, J. and Ausubel, F.M. (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Nat. Acad. Sci. USA. 91, 8955–8959.

    Article  CAS  Google Scholar 

  8. Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R. and Ausubel, F.M. (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146, 381392.

    Google Scholar 

  9. Thomma, B.P.H.J., Eggermont, K., Pennincéx, LA.M.A, Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A. and Broekaert, W.F. (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95, 15107–15111.

    Article  CAS  Google Scholar 

  10. Schönbeck, F. and Schlösser, E. (1976) Preformed substances as potential protectants, p. 653–678, in R. Heitefuss and P.H. Williams (eds.), Physiological plant pathology, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  11. VanEtten, H.D., Mansfield, J.W., Bailey, J.A. and Farmer, E.E. (1994) Two classes of plant antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 6, 1191–1192.

    CAS  Google Scholar 

  12. Osbourn, A.E. (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821–1831.

    CAS  Google Scholar 

  13. Hamilton, R.H. (1964) A corn mutant deficient in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one with an altered tolerance of atrazine. Weeds 12, 27–30.

    Article  CAS  Google Scholar 

  14. Frey, M., Chomet, P., Glawischnig, E., Stettnet, C., Grün, S, Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R.B., Briggs, S.P., Simcox, K. and Gierl, A. (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277, 696–699.

    Google Scholar 

  15. Maher, E.A., Bate, N.J., Ni, W., Elkind, Y., Dixon, R.A. and Lamb, C.J. (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl. Acad. Sci. 91, 7802–7806.

    Article  CAS  Google Scholar 

  16. Osbourn, A.E. (1996) Saponins and plant defence–A soap story. Trends Plant Sci., 1, 4–9.

    Article  Google Scholar 

  17. Hostettman, K.A. and Marston, A. (1991) Saponins, Cambridge University Press, Cambridge.

    Google Scholar 

  18. Crombie, L., Crombie, W.M.L. and Whiting, D.A. (1986) Structures of the oat root resistance factors to take-all disease, avenacins A-1, A-2, B-I and B-2 and their companion substances. J. Chem. Soc. Perkins I, 1917–1922.

    Article  Google Scholar 

  19. Crombie, W.M.L. and Crombie, L. (1986) Distribution of avenacins A-1, A-2, B-1 and B-2 in oat roots: Their fungicidal activity towards “take-all” fungus. Phytochemistry 25, 2069–2073.

    Article  CAS  Google Scholar 

  20. Osbourn, A.E., Clarke, B.R., Lunness, P., Scott, P.R. and Daniels, M.J. (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol. Mol. Plant PathoL 45, 457.

    Article  CAS  Google Scholar 

  21. Turner, E.M. (1953) The nature of resistance of oats to the take-all fungus. J. Exp. Bot., 4, 264–271.

    Article  CAS  Google Scholar 

  22. Bowyer, P., Clarke, B.R., Lunness, P., Daniels, M.J. and Osbourn, A.E. (1995) Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science, 267, 371–374.

    Article  CAS  Google Scholar 

  23. Crombie, W.M.L., Crombie, L., Green, J.B. and Lucas, J.A. (1986) Pathogenicity of the take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 25, 2075–2083.

    Article  CAS  Google Scholar 

  24. Roddick, J. G. and Drysdale, R.B. (1984) Destabilization of liposome membranes by the steroidal glycoalkaloid a-tomatine. Phytochemistry, 23, 9–25.

    Article  Google Scholar 

  25. Steel, C.S. and Drysdale, R.B. (1988) Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine. Phytochemistry 27, 025–1030.

    Article  Google Scholar 

  26. Keukens, E.A.J., de Vrije, T., van den Boom, C., de Waard, P., Plasmna, H.H., Thiel, F., Chupin, V., Jongen, W.M.F. and de Kruijff, B. (1995) Molecular basis of glycoalkaloid induced membrane disruption. Biochim. Biophys. Acta, 1240, 216–228.

    Article  Google Scholar 

  27. Nishikawa, M., Nojima, S., Akiyama, T., Sankawa, U. and Inoue, K. (1984) Interaction of digitonin and its analogs with membrane cholesterol. JBiochem. Tokyo 96, 1231–1239.

    CAS  Google Scholar 

  28. Schulz, G. and Sander,H. (1957) Über cholesterin-Tomatid. Eine neue Molekülverbinding zur analyse und preparativen Gewinnung von Steroiden. Hoppe Seylers Zeitschrift für Physiologische Chemie 308, 122.

    Google Scholar 

  29. Carter, J.P., Spink, J., Cannon, P., Daniels, M.J. and Osbourn, A.E. (1999) Isolation, characterization and avenacin sensitivity of a diverse collection of cereal root colonizing fungi. Appt Env. Microbiol., 65, 33643372.

    Google Scholar 

  30. Harney, S. K., Rogers, S.O. and Wang, C.J.K. (1997) Molecular characterization of dematiaceous root endophytes. Mycol. Res. 101, 1397–1404.

    Article  CAS  Google Scholar 

  31. Wetzel III, H. C., Dernoeden, P.H., and Millner, P.D. (1996) Identification of darkly pigmented fungi associated with turfgrass roots by mycelial characteristics and RAPD-PCR. Plant Dis. 80, 359–364.

    Article  CAS  Google Scholar 

  32. Arneson, P.A. and Durbin, R.D. (1968) The sensitivity of fungi to a-tomatine. Phytopathology 58, 536537.

    Google Scholar 

  33. Suleman, P., Tohamy, A.M., Saleh, A.A., Madkour, M.A. and Straney, D.C. (1996) Variation in sensitivity to tomatine and rishitin among isolates of Fusarium oxysporum f.sp. lycopersici, and strains not pathogenic to tomato. Physiol. Mol. Plant Pathol. 48, 131–144.

    Article  CAS  Google Scholar 

  34. Papadopoulou K., Melton R.E., Leggett M., Daniels M.J. and Osbourn A.E. Compromised disease resistance in saponin-deficient plants. PNAS,in press.

    Google Scholar 

  35. Trojanowska M.R., Threlfall D.R., Osbourn A.E. and Daniels M.J. (1998). Investigation of saponin biosynthesis in primary roots of oat mutants (Avena strigosa), in J. Sanchez, E. Cerda-Olmedo and E. Martinez-Force (eds.), Adv. Plant Lipid Res., 458–461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osbourn, A., Carter, J., Papadopoulou, K., Haralampidis, K., Trojanowska, M., Melton, R. (2000). Oat Root Saponins and Root-Infecting Fungi. In: Oleszek, W., Marston, A. (eds) Saponins in Food, Feedstuffs and Medicinal Plants. Proceedings of the Phythochemical Society of Europe, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9339-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9339-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5341-1

  • Online ISBN: 978-94-015-9339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics