Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 304))

  • 405 Accesses

Abstract

The present paper discusses the major corrosion mechanisms of concrete subjected to an aggressive environment. The majority of these deleterious reactions involves the transport of gases, liquids or ions through the porous cement paste matrix, and relationships are given between the permeability of concretes for these species and the observed corrosion rates. In many cases, transport parameters of concretes such as diffusion coefficients, coefficients for gas and water permeability, or the capillary suction rate may represent a characteristic parameter to describe the corrosion rate. However, corrosion mechanisms also exist which do not depend on the transport of species or which require additional information on the concrete composition. In these cases, transport parameters alone are insufficient to characterize the corrosion resistance of a given concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Performance criteria for concrete durability” Report of RILEM TC 116 “Permeability of concrete as a criterion of its durability,” in print.

    Google Scholar 

  2. RILEM International Symposium on Carbonation of Concrete, Fulmer Grange, 1976.

    Google Scholar 

  3. Günter, M.; Hilsdorf, H. K.; “Einfluß der Nachbehandlung auf die Widerstandsfähigkeit von Betonober flächen,” Schlußbericht zum Forschungsauftrag des DBV Nr. 88, 1983, Institut für Massivbau und Baustofftechnologie, Universität Karsruhe.

    Google Scholar 

  4. Schießl, P.; [Ed.] “Corrosion of steel in concrete,” Report of RILEM TC 60 CSC, Chapman & Hall, London, 1988.

    Google Scholar 

  5. Van Aardt, J. H. P.; “The resistance of concrete and mortars to chemical attack,” National Building Research Institute, Pretoria, SA, Bulletin 13 and 17, 1955.

    Google Scholar 

  6. Wierig, H. J.; “Longtime studies on the carbonation of concrete under normal outdoor exposure,” RILEM seminar on the durability of concrete structures under normal outdoor exposure, Hannover, 1984.

    Google Scholar 

  7. Papadakis, Y. G.; Fardis, M. N.; Vayenas, C. G.; “Effect of composition, environmental factors and cement lime mortar coating on concrete carbonation,” Materials and Structures, 1992, Vol. 25.

    Google Scholar 

  8. Bakker, R. F. M.; Corrosion of steel in concrete, “Initiation period” Report of RILEM TC 60-CSC, Chapman & Hall, London, 1988.

    Google Scholar 

  9. Bunte, D.; “Zum karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Außenbauteilen aus Stahlbeton,” Institut für Baustoffe, Massivbau und Brandschutz, TU Braunschweig, Heft 107, 1994.

    Google Scholar 

  10. Hilsdorf, H. K.; Schönlin, K.; Burieke, F.; “Dauerhaftigkeit von Betonen,” Institut für Massivbau und Baustofftechnologie, Universtät Karlsruhe, 1992.

    Google Scholar 

  11. Hardt, R.; “Einfluß einer Karbonatisierung auf die Permeabilität von Betonen,”. Thesis, Universität Karlsruhe, 1988.

    Google Scholar 

  12. Dhir, R. K.; Hewlett, P. C.; Chan, Y. N; “Near surface characteristics of concrete,” Magazine of Concrete Research Vol. 39, No. 141, 1987, 41, No. 147, 1989, 41, No. 148, 1989.

    Google Scholar 

  13. Parrott, L. J. “Water absorption of cover concrete,” prepared for publication in Materials and Structures.

    Google Scholar 

  14. Paulmann, K. Rostacy, F. S.; “Praxisnahes Verfahren zur Beurteilung der Dichtigkeit oberflächennaher Betonschichten auf die Dauerhaftigkeit,” Institut für Baustoffe, Massivbau und Brandschutz, TU Braunschweig, 1990.

    Google Scholar 

  15. Rostam, S. [Ed.] CEB-RILEM International workshop on the durability of concrete structures, Copenhagen, 1983.

    Google Scholar 

  16. Grube, H; Rechenberg, W.; “Betonabtrag durch chemisch angreifende saure Wässer,” Beton, 37, (1987).

    Google Scholar 

  17. Knöfel, D.; Böttger, K. G.; “Zum Einfluß SO2-reicher Atmosphäre auf Zementmörtel,” Bautenschutz und Bausanierung, (8), 1985, Heft 1.

    Google Scholar 

  18. Oberholster, R. E.; “Pore structure, permeability and diffusivity of hardened cement paste and concrete in relation to durability,” Proc. 8th International Congress on the chemistry of cements, Rio de Janeiro, 1986.

    Google Scholar 

  19. Goncalves, A.; “Durability of high strength concrete,” Report submitted to RILEM TC 116.

    Google Scholar 

  20. Metha, P. K.; “Pozzolanic and cementitious by-products in concrete- another look,” 3rd. Int. Conf. Fly-ash, silica fume, slag and natural pozzolans in concrete, ACI SP 114, Trondheim, 1989.

    Google Scholar 

  21. Hudec, P. P.; “Common factors affecting alkali-reactivity and frost durability of aggregates,” Proc. 5th Int. Conf. Durability of building materials and components, Brighton, 1990.

    Google Scholar 

  22. Fagerlund, G.; “The critical degree of saturation method of assessing the freeze/thaw resistance of concrete,” Materiaux et Construction, Vol. 10, No. 58, 1977.

    Google Scholar 

  23. Graf, H.; Bonzel, J.; “Ober den Einfluß der Porosität des erhärteten Betons auf seine Gebrauchs-eigenschaften,” Beton, Heft 7, 1990.

    Google Scholar 

  24. Grube, H; Rechenberg, W.; “Durability of concrete structures in acidic water,” Cement and Concrete Research, Vol. 19, 1989.

    Google Scholar 

  25. Andrade, C.; Alonso, C.; Rz. Maribona, I.; Garcia, M.; “Suitability of the measurement technique of oxygen permeability in order to predict corrosion rates of concrete rebars,” Klieger Conference, ACI, San Diego, 1989.

    Google Scholar 

  26. Kunterding, R.; “Beanspruchung der Oberflächen von Stahlbetonsilos durch Schüttgüter” Dissertation, Universität Karlsruhe, 1991.

    Google Scholar 

  27. Dhir, R. K.; Hewlett, P. C.; Chan, Y. N.; “Near surface characteristics of concrete: abrasion resistance,” Materials and Structures, Vol. 24, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kropp, J. (1996). Corrosion Mechanisms of Concrete and Their Relevant Transport Processes. In: Jennings, H., Kropp, J., Scrivener, K. (eds) The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8646-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8646-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4653-6

  • Online ISBN: 978-94-015-8646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics