Skip to main content

In-Time Failure Prognosis and Fatigue Life Prediction of Structures

  • Chapter
Real Time Fault Monitoring of Industrial Processes

Abstract

The in-time failure prognosis and safety assessment of today’s high risk industrial structures implies the accurate estimation of the residual lifetime of the structure in the course of its service. Reduction of the operation cost, estimation of the structural aging, structure life extension, prevention of catastrophic accidents, environmental protection, are some of the aspects that have to be considered in the management of complex high risk industrial systems as nuclear power plants, chemical plants, off-shore structures, marine structures, gas (LNG, LPG) installations etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akyurek T. and O.G. Bilir (1992). A survey of fatigue crack growth life estimation methodologies. Engineering Fracture Mechanics, 42, 5, p. 797.

    Article  Google Scholar 

  • Al-Obaid Y.F. (1992). Fracture toughness parameter in a pipeling. Engineering Fracture Mechanics, 43, 3, p. 461.

    Article  Google Scholar 

  • Ben-Amoz M. (1992). Prediction of fatigue crack initiation life from cumulative damage tests. Engineering Fracture Mechanics, 41, 2, p. 247.

    Article  Google Scholar 

  • Bhargava V. et al. (1986). Analysis of cyclic crack growth in high strength roller bearings. Theoretical and Applied Fracture Mechanics, 5, p. 31.

    Article  Google Scholar 

  • Bladwin J.F., and B.W. Pilsworth (1980). Axiomatic approach to implication for approximate reasoning with fuzzy logic. Fuzzy Sets and Systems, 3, p. 193.

    Article  MathSciNet  Google Scholar 

  • Bogdanoff J.L. and F. Kozin (1985). Probabilistic models of cumulative Damage. John Wiley and Sons, N.Y.

    Google Scholar 

  • Bogdanoff J.L. and F. Kozin (1984). Probabilistic models of fatigue crack growth. Engineering Fracture Mechanics, 20, 2, p. 225.

    Article  Google Scholar 

  • Box G.E.P. and G.M. Jenkins (1976). Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco, CA.

    Google Scholar 

  • Brown C.B. and J.T.P. Yao (1983). Fuzzy Sets and Structural Engineering. Journal of Structural Engineering, ASCE, 109, 5, p. 211.

    Article  Google Scholar 

  • Camerini et al. (1992). Application of automated eddy current techniques for off-shore inspection. In C. Hallai-P. Kulcsar (Eds.), “Non-Destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Cheng Y.W. (1985). The fatigue crack growth of a ship steel in saltwater under spectrum loading. International Journal of Fatigue, 7, 2, p. 95.

    Article  Google Scholar 

  • Cheng Y.W. (1988). Fatigue crack growth analysis under sea-wave loading. International Journal of Fatigue, 10, 2, p. 101.

    Article  Google Scholar 

  • Chou K. C. and J. Yuan (1992). Safety assessment of existing structures using a filtered fuzzy relation. Structural Safely, 11, p. 173.

    Article  Google Scholar 

  • Chow C. L. and K.H. Wong (1987). A comparative study of crack propagation models for PMMA and PVC. Theoretical and Applied Fracture Mechanics, 8, p. 101.

    Article  Google Scholar 

  • Cortie M. B. and G.G. Garrett (1988). On the correlation between the C and m in the Paris equation for fatigue crack propagation. Engineering Fracture Mechanocs, 30, 1, p. 49.

    Article  Google Scholar 

  • D’Attelis C. et al. (1992). A bank of Kalman filters for failure detection using acoustic emission signals. In C. Hallai - P. Kulcsar (Eds.), “Non-destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Dubois D. and H. Prade (1986). Fuzzy sets and statistical data. European Journal of Operational Research, 25, p. 345.

    Article  MathSciNet  MATH  Google Scholar 

  • Dufresne J., Lucia A., Grandemange J. and A. Pellissier-Tanon (1986). The COVASTOL program. Nuclear Engineering and Design, 86, p. 139.

    Article  Google Scholar 

  • Dufresne J., Lucia A., Grandemange J. and A. Pellissier-Tanon (1988). Probabilistic vessels-study of the failure of pressurized water reactor (PWR) vessels. Report EUR No 8682, JRC-Ispra (Italy), Commission of the European Communities.

    Google Scholar 

  • Fukuda T. and T. Mitsuoka (1986). Pipeline inspection and maintenance by applications of computer data processing and Robotic technology. Computers in Industry, 7, p. 5.

    Article  Google Scholar 

  • Garribba S. et al. (1988). Fuzzy measures of uncertainty for evaluating non-destructive crack inspection. Structural Safety, 5, p. 187.

    Article  Google Scholar 

  • Georgel B. and R. Zorgati (1992). EXTRACSION: a system for automatic Eddy Current diagnosis of steam generator tubes in nuclear power plant. In C. Hallai - P. Kulcsar (Eds.), “Non-Destructive testing 92”, Elsevier Science Publishing.

    Google Scholar 

  • Ghonem H. and S. Dore (1987). Experimental study of the constant - probability crack growth curves under constant amplitude loading. Engineering Fracture Mechanics, 27, 1, p. 1.

    Article  Google Scholar 

  • Fukuda T. and T. Mitsuoka (1986). Pipeline inspection and maintenance by applications of computer data processing and Robotic technology. Computers in Industry, 7, p. 5.

    Article  Google Scholar 

  • Godfrey M.W., Mahcwood L.A. and D.C. Emmony (1986). An improved design for point contact transducer. NDT International, 19, 2.

    Article  Google Scholar 

  • Grangeat P. et al. (1992). X-Ray 3D cone beam tomography application to the control of ceramic parts. In C. Hallai - P. Kulcsar (Eds.), “Non-Destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Guedes-Soares C. (1984). Probabilistic models for load effects in ship structures. Report UR-84–38, Marine Technology Dept., The Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  • Hadipriono F. and T. Ross (1987). Towards a rule-based expert system for damage assessment of protective structures. Proceedings of International Fuzzy Systems Association (IFSA) Congress, Tokyo, Japan, July 20–25.

    Google Scholar 

  • Hagemaier D.J., Wendelbo A.H. and Y. Bar-Cohen (1985). Aircraft Corrosion and detection methods. Materials Evaluation, 43, p. 426.

    Google Scholar 

  • Halford et al. (1989). Fatigue life prediction modeling for turbine hot section materials. ASME Journal of Engineering for Gas Turbines and Power, 11, 1, p. 279.

    Google Scholar 

  • Hasselmann K. et al. (1976). A parametric wave prediction model. Journal of Physical Oceanography, 6, p. 200.

    Article  Google Scholar 

  • Hoeppner D.W. and W.E Krupp (1974). Prediction of component life by application of fatigue crack growth knowledge. Engineering Fracture Mechanics, 6, p. 47.

    Article  Google Scholar 

  • Hogben H. et al. (1976). Environmental conditions. Report of Committee 1.1, Procedings of 6th International Ship Structures Congress, Boston.

    Google Scholar 

  • Hull B. and J. Vernon (1988). Non-Destructive Testing. MacMillan Education, London.

    Book  Google Scholar 

  • Journet B.G. and R.M. Pelloux (1987). A methodology for studying fatigue crack propagation under spectrum loading: application to rail steels. Theory and Applications of Fracture Mechanics, 8, p. 117.

    Article  Google Scholar 

  • Jovanovic A.S. et al. (1989). Expert Systems in Structural Safety Assessment. Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  • Kalyanasundaram P. et al. (1991). Brit. Journal ofNDT, 33, 5, p. 221.

    Google Scholar 

  • Komatsu H. et al. (1992). Basic study on ECT data evaluation method with neural network. In C. Hallai and P. Kulcsar (Eds.), “Non-Destructive Testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Kozin F. and J.L. Bogdanoff (1992). Cumulative damage model for fatigue crack growth based on reaction rate theory. Engineering Fracture Mechanics, 41, 6, p. 873.

    Article  Google Scholar 

  • Landez J.P. et al. (1992). Ultrasonic inspection of vessel closure head penetrations. In C. Hallai - P. Kulsar (Eds.), “Non-Destructive testing 92”, Elsevier Science Publishers.

    Google Scholar 

  • Lankford J. and S.J. Hudak Jr. (1987). Relevance of the small crack problem to lifetime prediction in gas turbines. International Journal of Fatigue, 9, 2, p. 87.

    Article  Google Scholar 

  • Lucia A.C. (1985). Probabilistic structural reliability of PWR pressure vessels. Nuclear Engineering and Design, 87, p. 35.

    Article  Google Scholar 

  • Lucia A.C., Arman G. and A. Jovanovic (1987). Fatigue crack propagation: probabilistic models and experimental evidence. In Trans. 9th SMiRT Conf., Vol. M, Lausanne, p. 313.

    Google Scholar 

  • Lucia A.C. and G. Volta (1991). A knowledge-based system for structural reliability assessment. Trans. SMiRT 11, Vol. SD!, Tokyo, pan.

    Google Scholar 

  • Ludwing and Roberti (1989). A nondestructive ultrasonic imaging system for detection of flaws in metal blocks. IEEE Transactions on Instruments and Measurements, 38, 1.

    Google Scholar 

  • Madsen H.O., Krenk S. and N.C. Lind (1986). Methods of structural safety. Prentice-Hall, N.J., USA.

    Google Scholar 

  • Marci G. (1992). A fatigue crack growth threshold. Enginneering Fracture Mechanics, 41, 3, p. 367.

    Article  Google Scholar 

  • Mohammadi J. et al. (1991). Evaluation of system reliability using expert opinions. Structural Safety, 9, p. 227.

    Article  Google Scholar 

  • Namioka T. et al. (1992). Development and experience pipeline inspection robots by TV camera. In C. Hallai - P. Kulcsar (Eds.), “Non-Destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Nielsen N. (1981). P-scan system for ultrasonic weld inspection. British Journal of NDT, March 1981, p. 63.

    Google Scholar 

  • Nisitani H., Goto M. and N. Kawagoishi (1992). A small-crack growth law and its related phenomena. Enginering Fracture Mechamics, 41, 4, p. 499.

    Article  Google Scholar 

  • Parpaglione M.C. (1992). Neural networks applied to fault detection using acoustic emission. In C. Hallai - P. Kulcsar (Eds.), “Non-Destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Raj, B., (1992) “Reliable solutions to engineering problems in testing through acoustic signal analysis”, in “Non-Destructive testing 92”, C. Hallai and P. Kulcsar (Eds.), Elsevier Science Publishers.

    Google Scholar 

  • Reed D.A. (1993). Treatment of uncertainty in structural damage assessment. Reliability Engineering and Systems Safety, 39, p. 55.

    Article  Google Scholar 

  • Sandberg G. et al. (1989). The application of a continuous leak detection system to pipelines and associated equipment. IEEE Transactions in Industry Applications, 25, 5, p. 906.

    Article  MathSciNet  Google Scholar 

  • Schicht A. and A. Zhirabok (1992). The integrated Expert Systems for NDT in quality control systems. In C. Hallai - P. Kulcsar (Eds.),“Non-Destructive testing 92”, Elsevier Science Publishing.

    Google Scholar 

  • Shiraishi N. et al. (1991). An expert system for damage assessment of a reinforced concrete bridge deck. Fuzzy Sets and Systems, 44, p. 449.

    Article  Google Scholar 

  • Singh G.P. and S. Udpa (1986). The role of digital signal processing in NDT. NDT International, 19, 3, p. 125.

    Article  Google Scholar 

  • Solomos G.P. and V.C. Moussas (1991). A time series approach to fatigue crack propagation. Structural Safety, 9, p. 211.

    Article  Google Scholar 

  • Stavrakakis G.S. (1990). Quality assurance of welds in ship structures. Quality and Reliability Engineering International, 6, p. 323.

    Article  Google Scholar 

  • Stavrakakis G. S. (1992). Improved structural reliability assessment using non-linear regression techniques to process raw fatigue crack growth test data. Quality and Reliability Engineering International, 8, p. 341.

    Article  Google Scholar 

  • Stavrakakis G.S. (1993). An efficient computer program for marine structures reliability and risk assessment. The Naval Architect, July/August ‘83, p. E342.

    Google Scholar 

  • Stavrakakis G.S., Lucia A.C. and G. Solomos (1990). A comparative study of the probabilistic fracture mechanics and the stochastic markovian process approaches for structural reliability assessment. International Journal Pres. Ves. Piping, 41, p. 25.

    Article  Google Scholar 

  • Stavrakakis G.S. and A. Pouliezos (1991). Fatigue life prediction using a new moving window regression method. Mechanical Systems and Signal Processing, 5, 4, p. 327.

    Article  Google Scholar 

  • Stavrakakis G.S. and S.M. Psomas (1993). NDT data interpretation using Neural Networks. In “Knowledge based system applications in power plant and structural engineering”, SMiRT 12 post-conference Seminar no. 13, August 23–25, Konstanz, Germany.

    Google Scholar 

  • Thoft-Christensen P. and J.D. Sorensen (1987). Optimal strategy for inspection and repair of structural systems. Civil Engineering Systems, 4, p. 17.

    Article  Google Scholar 

  • Van Dijk G.M. and J. Boogaard (1992). NDT reliability - a way to go. In C. Hallai and P. Kulcsar (Eds.), “Non-Destructive testing ‘82”, Elsevier Science Publishers.

    Google Scholar 

  • Vancoille M.J.S., Smets H.M.G. and F.L. Bogaerts (1993). Intelligent corrosion management systems. In “Knowledge based system applications in power plant and structural engineering” SMiRT 12 post-conference Seminar no. 13, August 23–25, Konstantz, Germany.

    Google Scholar 

  • Verreman Y. et al. (1987). Fatigue life prediction of welded joints - a reassessment. Fatigue Fracture Engineering and Materials Structure, 10, 1, p. 17.

    Article  Google Scholar 

  • Virkler D.A., Hillberry B.M. and P.K. Goel (1979). The statistical nature of fatigue crack propagation. ASME Journal Enginnering Materials Technology, 101, p. 148.

    Article  Google Scholar 

  • Yanagi C. (1983). Robotics in material inspection. The NDT Journal of Japan, 1, No 3, p. 162.

    Google Scholar 

  • Yao J.T.R. (1985). Safety and Reliability of Existing Structures. Pitman Publishing, Marshfield.

    Google Scholar 

  • Zhu W.Q. and Y.K Lin (1992). On fatigue crack growth under random loading. Engineering Fracture Mechanics, 43, 1, p. 1.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pouliezos, A.D., Stavrakakis, G.S. (1994). In-Time Failure Prognosis and Fatigue Life Prediction of Structures. In: Real Time Fault Monitoring of Industrial Processes. International Series on Microprocessor-Based and Intelligent Systems Engineering, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8300-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8300-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4374-0

  • Online ISBN: 978-94-015-8300-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics