Skip to main content

Parameter Estimation Methods for Fault Monitoring

  • Chapter
Real Time Fault Monitoring of Industrial Processes

Abstract

Fault detection via parameter estimation relies on the principle that possible faults in the monitored process can be associated with specific parameters and states of a mathematical model of a process given in general by an input-output relation,

$$y(t) = f(u,e,\theta ,x)$$
(3.1)

where y(t) represents the vector output of the process, u(t) the vector input, x(t) the partially measurable state variables, θ the nonmeasurable process parameters likely to change and e(t) unmodeled or noise terms affecting the process. It is obvious therefore, that it is necessary to have an accurate theoretical dynamic model of the process in order to apply parameter estimation methods. This is usually derived from the basic balance equations for mass, energy, and momentum, the physico—chemical state equations and the phenomenological laws for any irreversible phenomena. The models will then appear in the continuous or discrete time domain, in the form of ordinary or partial differential or difference equations. Their parameters θ i are expressed in dependence on process coefficients p j, like storage or resistance quantities, whose changes indicate a process fault. Hence, the parameters θ i of continuous time models have to be estimated. In this case there is a minimum number of independently measurable quantities which permit the estimation of various states and parameters. As an example consider a simple dynamic process model with lumped parameters, linearized about an operating point, which may be described by the differential equation

$$y(t) + ... + {a_n}{y^{(n)}}(t) = {b_0}u(t) + {b_1}{u^{(1)}}(t) + ... + {b_m}{u^{(m)}}(t)$$
(3.2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aström K.J. and P. Eykhoff(1971). Special Issue, AUTOMATICA, 7,123– 162.

    Google Scholar 

  • Aström K.J. and B. Wittenmark (1971). Problems of identification and control. Journal of Mathematical Analysis and Applications, 34, 50–113.

    Article  Google Scholar 

  • Baskiotis C., Raymond J. and A. Rault (1979). Parameter identification and discriminant analysis of jet engine mechanical state diagnosis. Proceedings, IEEE Conference on Decision and Control, Fort Lauderdale.

    Google Scholar 

  • Björck A. (1967). Solving linear least square problems by Gram–Schmidt orthogonalization. BIT, 7, 1–21.

    Google Scholar 

  • Biermann G.J. (1977). Factorization methods for discrete sequential estimation. Academic Press, N.Y.

    Google Scholar 

  • Carayannis G., Manolakis D. and N. Kalouptsidis (1983). A fast sequential algorithm for least squares filtering and prediction. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-31, 1394–1402.

    Google Scholar 

  • Carayannis G., Manolakis D. and N. Kalouptsidis (1986). A unified view of parametric processing algorithms for prewindowed signals. Signal Processing, 10, 335–368.

    Article  MathSciNet  Google Scholar 

  • Carlsson B., Salgado M. and G.C. Goodwin (1988). A new method for fault detection and diagnosis. Technical Report EE8842, Dept. of Electrical Eng. and Computer Science, University of Newcastle, Australia.

    Google Scholar 

  • Cho K.R., Lang J.H. and S.D. Umans (1992). Detection of broken rotor bars in induction motors using state and parameter estimation. IEEE Transactions on Industry Applications, 28, 3, 702–709.

    Article  Google Scholar 

  • Cordero A.O. and D.Q. Mayne (1981). Deterministic convergence of a self tuning regulator with variable forgetting factor. Proceedings IEE, Part D, 128, 1, 19–23.

    Google Scholar 

  • DehoffR.L. Hall W.E. Jr. Adams R.J. and N.K. Gupta (1977). F100 multivariable control synthesis program. AFAPLTR-77–35, Vol. I and I I.

    Google Scholar 

  • DehoffR.L. and W.E. Hall Jr. (1978). Models for jet engine systems. Part II: state space techniques and modeling for control. Control and Dynamic Systems, 14, 259–299.

    Article  Google Scholar 

  • Dalla Molle D.T. (1985). Fault detection via parameter estimation is a single effect evaporator. MS Thesis, University of Texas, Austin.

    Google Scholar 

  • Dalla Molle D.T. and M.D. Himmelblau (1987). Fault detection in an evaporator via parameter estimation in real time. Fault Detection and Reliability: Knowledge—based and other approaches, Pergamon Press, 131–138.

    Google Scholar 

  • Favier G., Rougerie C., Bariani J.P., de Amaral W., Gimena L. and L.V.R. de Amanda (1988). A comparison of fault detection methods and adaptive identification algorithms. Proceedings, IFAC Identification and System Parameter Estimation, Beijing, PRC, 535–542.

    Google Scholar 

  • Fortescue T.R., Kershenbaum L.S. and B.E. Ydstie, (1981). Implementation of self—tuning regulators with variable forgetting factors. Automatica, 17, 6, 831–835.

    Google Scholar 

  • Freyermuth B. (1991). An approach to model based fault diagnosis of industrial robots. Proceedings, IEEE International Conference on Robotics and Automation, April 7–12, 1991, Sacramento, USA.

    Google Scholar 

  • Freyermuth B. and R. Iserman (1991). Model based incipient fault diagnosis of industrial robots via parameter estimation and feature classification. Proceedings, European Control Conference ECC ‘81, 2–5 July 1991, Grenoble, France.

    Google Scholar 

  • Gantmacher F.R. (1977). The theory of matrices. Chelsea Publishing Company.

    Google Scholar 

  • Geiger G. (1982). Monitoring of an electrical driven pump using continuous— time parameter estimation methods. Proceedings, 6th IFAC Symposium on Identification and Parameter Estimation, Washington.

    Google Scholar 

  • Geiger G. (1984). Fault identification of a motor—pump system using parameter estimation and pattern classification. Proceedings, 9th IFAC Congress, Budapest.

    Google Scholar 

  • Geiger G., (1986). Fault identification using a discrete square root method. International Journal of Modeling and Simulation, 6, 1, 26–31.

    Google Scholar 

  • Goodwin G.C. and M.E. Salgado (1989). Quantification of uncertainty in estimation us- ing an embedding principle. International Journal of Adaptive Control and Signal Processing, 8, 232–345.

    Google Scholar 

  • Hägglund T. (1984). Adaptive control of systems subject to large parameter changes. Proceedings, IFAC 9th Triennial World Congress, Budapest, Hungary, 993–998.

    Google Scholar 

  • Henry J.R. (1988). CF-18F404 transient performance trending. AGARD, Paper No. 448, Quebec City.

    Google Scholar 

  • Iserman R. (1984). Process fault detection based on modelling and estimation methods — A survey. Automatica, 20, 387–404.

    Article  Google Scholar 

  • Iserman R. (1987). Experiences with process fault detection methods via parameter estimation. In System Fault Diagnostics and Related Knowledge Based Approaches, S. Tzafestas et al.. (eds.), D. Reidel.

    Google Scholar 

  • Iserman R. (1991). Fault diagnosis of machines via parameter estimation and knowledge processing. Proceedings, IFAC/IMACS Symposium “SafeProcess ‘81”, 10–13 September 1991, Baden—Baden, Germany.

    Google Scholar 

  • Iserman R Appel W., Freyermuth B., Fuchs A., Janik W., Neumann D., Reiss Th. and P. Wanke (1990). Model based fault diagnosis and supervision of machines and drives. Proceedings, IFAC I1 th Triennial World Congress,Tallinn, Estonia.

    Google Scholar 

  • Janik W. and A. Fuchs (1991). Process— and signal—model based fault detection of the grinding process. Proceedings, IFAC/IMACS Symposium “SafeProcess ‘81”, 10–13 September 1991, Baden—Baden, Germany.

    Google Scholar 

  • Kaminski P.G., (1971). Square root filtering smoothing for discrete processes. Phd. Thesis, Dept. Aeronautics and Astronautics, Stanford University.

    Google Scholar 

  • Kalouptsidis N. (1987). Efficient transversal and lattice algorithms for linear phase multichannel filters. IEEE Transactions on Circuits and Systems, CAS-37, 805–813.

    Google Scholar 

  • Kalouptsidis N., Carayannis G. and D. Manolakis (1984). A fast covariance type algorithm for sequential least squares filtering and prediction. IEEE Transactions on Automatic Control, AC-29, 8, 752–755.

    Article  Google Scholar 

  • Kalouptsidis N., Manolakis D. and G. Carayannis (1983). A family of computationally efficient algorithms for multichannel signal processing. Signal Processing, 5, 1, 5–19.

    Article  MathSciNet  Google Scholar 

  • Kalouptsidis N. and S. Theodoridis (1987). Parallel implementation of efficient LS algorithms for filtering and prediction. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-35, 11, 1565–1569.

    Article  Google Scholar 

  • Karaboyas S. and N. Kalouptsidis N. (1991). Efficient adaptive algorithms for ARX identification. IEEE Transactions on Acoustics, Speech and Signal Processing.

    Google Scholar 

  • Kumamaru K., Söderström T., Sagara S. and K. Morita (1988). On—line fault detection in adaptive control systems by using KuIlback discrimination index. Proceedings, IFAC Identification and System Parameter Estimation, 1135–1140.

    Google Scholar 

  • Kwon 0.—K. and G.C. Goodwin (1990). A fault detection method for uncertain systems with unmodeled dynamics, linearization errors and noisy inputs. Proceedings, 11th IFAC Triennial World Congress, Tallinn, Estonia, 367–372.

    Google Scholar 

  • Liu J.S.H. (1977). Detection, isolation and identification techniques for noisy degradation in linear, discrete-time systems. Proceedings, 1977 CDC, 1132–1139.

    Google Scholar 

  • Ljung L. (1987). System Identification: Theory for the User, Prentice Hall, Inc. Englewood Cliffs, N.J.

    Google Scholar 

  • Ljung L., Morf M. and D. Falconer (1978). Fast calculations of gain matrices for recursive estimation schemes. International Journal of Control, 27, 1–19.

    Article  MathSciNet  Google Scholar 

  • Maguire L.P. and G.W. Irwin (1991). Transputer implementation of Kalman filters. IEE Proceedings D, 138, 4, 355–362.

    MATH  Google Scholar 

  • Manolakis D., Carayannis G., Kalouptsidis N., (1980). Fast inversion of vector generated matrices for signal processing. Signal Processing: Theories and Applications, North—Holland, 525–532.

    Google Scholar 

  • Merrill, W. (1984). Identification of multivariable high—performance turbofan engine dynamics from closed loop data. Journal of Guidance, 7, 677–683.

    Article  Google Scholar 

  • Merrington G., Kwon O.K., Goodwin G. and B. Carlsson (1991). Fault detection and diagnosis in Gas Turbines. Transactions of the ASME, 113, 276–282.

    Article  Google Scholar 

  • Neumann D. (1991). Fault diagnosis of machine—tools by estimation of signal spectra. Proceedings, IFAC/IMACS Symposium “SafeProcess ‘81”, 10–13 September 1991, Baden—Baden, Germany.

    Google Scholar 

  • Nold S. (1987). Fault detection in AC—drives by process parameter estimation. Proceedings, IFAC 10th Triennial World Congress, Munich, Germany.

    Google Scholar 

  • Nold S.and R. Iserman (1986). Identifiability of process coefficients for technical failure diagnosis. Proceedings, 25th IEEE Conference of Decision and Control, Athens, Greece, Dec. 1986, 1587–1592.

    Google Scholar 

  • Pot J., Falinower, V.M.and E. Irving (1984). Regulation multivariable adaptative des fours. Colloque CNRS “Commande Adaptative. Aspects Pratique et Theoriques”, St. Martin d’Heres.

    Google Scholar 

  • Potter J.E. (1963). New statistical formulas. Memo 40, Instrumentation Laboratory, MIT.

    Google Scholar 

  • Pouliezos A., Stavrakakis G. and C. Lefas (1989). Fault detetcion using parameter estimation — A survey. Quality and Reliability International, 5, 4, 283–290.

    Article  Google Scholar 

  • Pouliezos A. and G. S. Stavrakakis (1989). Fast fault diagnosis for industrial processes applied to the reliable operation of robotic systems. International Journal of Systems Science, 20, 7, 1233–1258.

    Article  MATH  Google Scholar 

  • Reiß T. (1991). Model based fault diagnosis and supervision of the drilling process. Proceedings, IFAC/IMACS Symposium “SafeProcess ‘81”, 10–13 September 1991, Baden—Baden, Germany.

    Google Scholar 

  • Rein T., Wanke P. and R. Iserman (1990). Model based fault diagnosis of a flexible milling center. Proceedings, IFAC Triennial World Congress, Tallinn, Estonia.

    Google Scholar 

  • Rhodes I.B. (1990). A parallel decomposition for Kalman filters. IEEE Transactions on Automatic Control,AC-35 3, 322–326.

    Google Scholar 

  • Shibata, H. Ikeda, Y., Maruoka, G., Aoki, S. and T. Ogawa (1988). Application of estimation techniques to failure detection for A.C. electric machines. Proceedings, IFAC Identification and System Parameter Estimation, Beijing, PRC, 1147–1152.

    Google Scholar 

  • Smed, T., B. Carlsson, C.E. de Souza and G.C. Goodwin (1988). Fault detection and diagnosis applied to gas turbines. Technical Report EE8815, Dept. of Electr. Engr. and Computer Science, Univ. of Newcastle, Australia.

    Google Scholar 

  • Söderström T. and K. Kumamaru (1985). On the use of Kullback discrimination index for model validation of fault detection. Report UPTEC 8520R, Uppsala University, Sweden.

    Google Scholar 

  • Söderström T. and P. Stoica (1988). System Identification. Prentice Hall.

    Google Scholar 

  • Stavrakakis G.S. and E.N. Dialynas (1991). Efficient computer based scheme for improving reliability performance of power substations. International Journal of Systems Science, 22, 9, 1527–1539.

    Article  Google Scholar 

  • Stavrakakis G.S. and A. Pouliezos (1991). Fatigue life prediction using a new moving window regression method. Mechanical Systems and Signal Processing, 5, 4, 327–340.

    Article  Google Scholar 

  • Stavrakakis G.S., Lefas Ch. and A. Pouliezos (1990). Parallel processing computer implementation of a real time DC motor drive fault detection algorithm. IEE Proceedings, Part B, 137, 5, 309–313.

    Google Scholar 

  • Thornton C.L. and G.J. Bierman (1977). Gram—Schmidt algorithms for covariance propagation. International Journal of Control, 25, 243–260.

    Article  MATH  Google Scholar 

  • Tzafestas S.G. and G.S. Stavrakakis (1986). Model reference adaptive control of industrial robots with actuator dynamics. IFAC/IFIP/IMACS International Symposium on Theory of Robots, Vienna, Austria, December 3–5.

    Google Scholar 

  • Wahlberg B. (1990). Robust frequency domain fault detection/diagnosis. Proceedings, 11th IFAC Triennial World Congress, Tallinn, Estonia, 373–378.

    Google Scholar 

  • Wanke P. and T. Reiß (1991). Model based fault diagnosis and supervision of the main and feed drives of a flexible milling center. Proceedings, IFAC/IMACS Symposium “SafeProcess ‘81”, 10–13 September 1991, Baden—Baden, Germany.

    Google Scholar 

  • Watanabe K. and D.M. Himmelblau (1983). Fault diagnosis in nonlinear chemical proc-esses; Part I. Theory. AIChE Journal, 29, 2, 243–249.

    Article  Google Scholar 

  • Weiss J.L. (1988). Threshold computation for detection of failures in SISO systems with transfer function errors. Proceedings, American Control Conference,2213–2218.

    Google Scholar 

  • Ydstie B.E., (1981), Phd. Thesis, University of London.

    Google Scholar 

  • Yeh H.G. (1991). Processing performance of two Kalman filter algorithms with a DSP32C by using assembly and C languages. IEEE Transactions on Industrial Electronics, 38, 4, 298–302.

    Article  Google Scholar 

  • Young P.C. (1981). Parameter estimation for continuous time models — a survey“, Automatica, 17, 23–29.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pouliezos, A.D., Stavrakakis, G.S. (1994). Parameter Estimation Methods for Fault Monitoring. In: Real Time Fault Monitoring of Industrial Processes. International Series on Microprocessor-Based and Intelligent Systems Engineering, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8300-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8300-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4374-0

  • Online ISBN: 978-94-015-8300-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics