Skip to main content

The Möbius-Neuberg and the Möbius-Pompeiu Theorems

  • Chapter
Recent Advances in Geometric Inequalities

Part of the book series: Mathematics and Its Applications ((MAEE,volume 28))

Abstract

The literature devoted to the following theorem and its variations and generalizations is great, and here we cite 89 references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Neuberg, ‘Sur les quadrangles complets’, Mathesis (2) 1 (1891), 81–82.

    Google Scholar 

  2. D. Pompeiu, ‘Une identité entre nombres complexes et un théorème de géométrie élémentaire’, Bull. math. phys. Ecole polytechn. Bucarest 6 (1936), 6–7.

    Google Scholar 

  3. A. F. Möbius, ’Über eine Methode, um von Relationen, welche der Longimetrie angehören, zu entsprechenden Sätzen der Planimetrie zu gelangen’, Ber. Verhandl. königl. Sächs. Ges. Wiss. Leipzig Math. Phys. Cl. 1852, 41–54.

    Google Scholar 

  4. J. Hadamard, Géométrie élémentaire, I, Paris 1898, p. 233.

    Google Scholar 

  5. C. Tweedie,’Inequality Theorem Regarding the Lines Joining Corresponding Vertices of Two Equilateral, or Directly Similar, Triangles’, Proc. Edinburgh Math. Soc. 22 (1903–1904), 22–26.

    Google Scholar 

  6. P. Pinkerton,’Note on Mr. TWeedie’s Theorem in Geometry, Ibid. 22 (1903–1904), 27.

    Google Scholar 

  7. F. G.-M. Exercises de géométrie, 5. éd., Tours-Paris 1912, pp. 522–523.

    Google Scholar 

  8. E. Rouché and Ch. de Comberousse, Traité de géométrie, I, 8. éd., Paris 1912, pp. 158–159.

    Google Scholar 

  9. De Lapierre, ‘Relation entre deux problèmes classiques’, Ens. sci. 4 (1930–1931), 25–26.

    Google Scholar 

  10. J. Lhermitte, ‘Sur le lieu des point dont les distances aux trois sommets d’un triangle ABC sont proportionnelles aux nombres a, ß, y, Ibid. 4 (1930–1931), 150–152.

    Google Scholar 

  11. Huisman,’Note’, Ibid. 4 (1930–1931), 152–153.

    Google Scholar 

  12. D. Pompeiu, ‘Remarques sur la note de M. Teodoriu’, Bull. math. phys. Ecole polytechn. Bucarest 1 (1930), 161–163.

    MATH  Google Scholar 

  13. G. R. Veldkamp, ‘Afleiding van eenige eigenschappen van koordenvierhoeken’, Nieuw Tijdschr. Wisk. 18 (1931), 293–295.

    MATH  Google Scholar 

  14. D. Barbilian, ‘Exkurs über die Dreiecke’, Bull. math. Soc. Roumaine sci. 38, II (1936), 3–62.

    Google Scholar 

  15. G. Bratu, ‘Un théorème de M. Pompeiu’, Bull. math. phys. Ecole polytechn. Bucarest 7 (1937), 3.

    MATH  Google Scholar 

  16. N. Obrechkoff, ‘Sur un théorème de M. Pompeiu’, Ibid. 7 (1937), 4–5.

    MATH  Google Scholar 

  17. H. Hilton, ‘Sur un théorème de M. D. Pompeiu’, Ibid. 7 (1937), 5.

    MATH  Google Scholar 

  18. E. Abason, ‘Sur une propriété du triangle équilatéral’, Ibid. 7 (1937), 6–8.

    Google Scholar 

  19. E. Abason, ‘Un théorème de géométrie’, Ibid. 7 (1937), 8–13.

    Google Scholar 

  20. N. G. Botea, ‘Une relation entre nombres complexes et la généralisation d’un théorème de géométrie élémentaire’, Ibid. 7 (1937), 13–14.

    Google Scholar 

  21. D. Barbilian, ‘Eine Verallgemeinung des Pompeiuschen Dreieckssatzes’, Bull. math. Soc. Roumaine sci. 39 I (1937), 3–12.

    Google Scholar 

  22. E. Abason, ‘Articol despre triunghiul echilateral’, Gaz. Mat. 42 (1937), 352–360, 393–406.

    Google Scholar 

  23. G. Bratu, ‘Sur le trapèze rectangle’, Mathematica (Cluj) 13 (1937), 263–269.

    Google Scholar 

  24. P. Montel, ‘Sur un problème de J. Bertrand’, Bull. math. phys. École polytechn. Bucarest 9 (1937–1938), 1–7.

    Google Scholar 

  25. A. Angelesco, ‘Sur un théorème de M. D. Pompeiu’, Ibid. 9 (1937–1938), 7–8.

    Google Scholar 

  26. D. Germani, ‘Sur un théorème de M. D. Pompeiu’, Ibid. 9 (1937–1938), 12–17.

    Google Scholar 

  27. E. M. Abason, ‘Sur la réciproque d’un théorème relatif au triangle équilatéral’, Ibid. 9 (1937–1938), 27–37.

    Google Scholar 

  28. A. Hoborski, ‘ElemenEarer Beweis eines planimetrischen Satzes des Herrn D. Pompeiu’, Ibid. 9 (1937–1938), 9–12.

    Google Scholar 

  29. C. Postelnicesco, ‘Surun—théorème de M. D. Pompeiu’, Ibid. 9 (1937–1938), 38–39.

    Google Scholar 

  30. M. Petrovitch, ‘A propos d’un théorème de M. Pompeiu’, Bull. math. Soc. Roumaine sci. 40 (1938), 205–208.

    Google Scholar 

  31. V. Thébault, ‘Sur un théorème de M. D. Pompeiu’, Bull. math. phys. École polytechn. Bucarest 10 (1938–1939), 38–42.

    Google Scholar 

  32. D. Pompeiu, ‘La géométrie € les imaginaires: démonstration de quelques théorèmes élémentaires’, Ibid. 11 (1939), 29–34.

    MathSciNet  Google Scholar 

  33. S. Gheorghiu, ‘Surun théorème de M. Pomp-eiu’, Ibid. 12 (1941), 221–234.

    MathSciNet  Google Scholar 

  34. T. Anghel4a, ‘Une identité entre nombres complexes et un théorème de géométrie élémentaire’, Bull, sci. Ecole polytechn. Timisoara 10 (1941), 249–252.

    Google Scholar 

  35. D. Pompeiu, ‘Un théorème de géométrie’, Bull. Sect. sci. Acad. Roumaine 24 (1941), 223–226.

    MathSciNet  Google Scholar 

  36. M. Zacharias, ‘Ein geometrischer Satz’, Ibid. 25 (1943), 247–248.

    MathSciNet  Google Scholar 

  37. I. Popa, ‘Sur un théorème de géométrie élémentA re’, Bull. École polytechn. Ibid 2 (1947), 79–80.

    MATH  Google Scholar 

  38. G. H. Hardy, A Cóurse of Pure Mathematics, III, Cambridge 1948, p. 105.

    Google Scholar 

  39. C. F. Manara, ‘Un teoremasui triangoli equilateri’, Period. Mat. (4) 31 (1953), 186–188.

    MATH  Google Scholar 

  40. S. V. Pavlovid, ‘Sur une démonstration géométrique d’un théorème de D. Pompeiu’, Elem. Math. 8 (1953), 13–15.

    Google Scholar 

  41. J.-P. Sydler, ‘Autre démonstration du théorème de Pompeiu’, Ibid. 8 (1953), 15–16.

    MathSciNet  MATH  Google Scholar 

  42. R. Lauffer, ‘Ein Satz der elementaren Geometrie’, Ibid. 8 (1953), 65, 136.

    Google Scholar 

  43. J.-P. Sydler, ‘Généralisation d’un théorème de M. Pompeiu’, Ibid. 8 (1953), 136–138.

    MathSciNet  MATH  Google Scholar 

  44. R. Deaux, ‘Théorème de Ptolémée et nombres complexes’, Mathesis 65 (1956), 96–98.

    Google Scholar 

  45. S. V. Pavlovid, ‘Sur deux théorèmes de D. Pompeiu’, Ibid. 65 (1956), 211–214.

    Google Scholar 

  46. W. Hansen, ‘Ein Beweis der Ptolemâischen Ungleichung’, Arch. Math. 7 (1956), 320–322.

    Article  MATH  Google Scholar 

  47. G. R. Veldkamp, ‘Een stelling uit de elementaire meetkunde van het platte vlak’, Nieuw Tijdschr. Wisk. 44 (1956), 1–4.

    MathSciNet  Google Scholar 

  48. O. Bottema, ‘De stelling van Pompeiu’, Ibid. 44 (1956), 183–184.

    MathSciNet  Google Scholar 

  49. W. Boomstra, ‘De stelling van Pompeiu nogmaais’, Ibid. 44 (19561957), 285–288.

    Google Scholar 

  50. Z. A. Skopec, ‘Nekotorie zamedanija k teoreme Pompeju’, Mat. prosy. 1957, No. 2, 205–210.

    Google Scholar 

  51. S. Manolov and D. Kolarov, ‘Opredeljane na oblastite v prostranstvoto, todkite na koito imat edno metridno svojstvo’, Godignik Univ. Sofija Mat. Fak. 52 (1957–1958), kn. 1, 165–181 (1959).

    Google Scholar 

  52. A. K. Humai, ‘Dokazatel’stvo teoremi Pompeiju v n-mernom prostranstve, Izv. AN EstSSR 7 (1958), No. 2, 154–155.

    Google Scholar 

  53. Ju. M. Gajduk and A. N. Hovanskij, ‘Kratkij obzor issledovanij po geometrii treugoljnika’, Mat. v Zkole 1958, No. 5, 50–58.

    Google Scholar 

  54. D. Pompeiu, Opera Matematica, Bucarest 1959.

    Google Scholar 

  55. S. V. Pavlovic, ‘Sur un théorème de Neuberg et son inversion’, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 29–32 (1959), 5–9.

    Google Scholar 

  56. S. Manolov, ‘Zadada 22’, Fiz.-mat. spisanie 3 (36) (1960), 152–153.

    Google Scholar 

  57. S. V. Pavlovid, ‘O Pompeiu-Neubergovoj teoremi’, Mat. biblioteka 19 (1961), 103–108.

    Google Scholar 

  58. S. V. Pavlovid, ‘Ober die Erweiterung eines M. Zacharias D. Pompeiu’schen Satzes’, Publ. Inst. math. Beograd 1 (15) (1961), 93–100 (1962).

    Google Scholar 

  59. S. Manolov and D. Kolarov, ‘Edin nain na razdeljane prostranstvoto na oblasti’, Fiz.-mat. spisanie 6 (39) (1963), 31–37.

    MathSciNet  Google Scholar 

  60. O. Bottema, Euclides 38 (1963–19b4) 129–137.

    Google Scholar 

  61. Z. A. Skopec, ‘Plo26a7-treugoljnika Pompeju’, Mat. v ékole 1964, No. 2, 68–70.

    MathSciNet  Google Scholar 

  62. S. Manolov and D. Kolarov, ‘Edin nain za razdeljane na pravite v ravninata na dye klasi’, Fiz.-mat. spisanie 9 (1966), 272–278.

    Google Scholar 

  63. S. V. Pavlovid, ‘Ober die Erweiterung eines élementargeometrischen Satzes von D. Pompeiu’, Abh. Math. Sem. Hamburg 30 (1967), 54–60.

    Article  Google Scholar 

  64. Z. A. Skopec, ‘Prilo2enija kompleksnih disel k zaS adam elementarnoj geometrii’, Mat. v 2kole 1967, No. 1, 63–71.

    Google Scholar 

  65. V. Kortenska, ‘Vrhu edin n za razdeljane na pravite v ravninata na dye klasi’, Godiénik Vis2. tehn. udebn. zaved. Mat. 4 (1967), kn. 3, 139–147 (1972).

    Google Scholar 

  66. O. Bottema, ‘Eine Erweiterung des Pompeiuschen Satzes’, Abh. Math. Sem. Hamburg 33 (1969), 119–123.

    Article  MathSciNet  MATH  Google Scholar 

  67. GI: O. Bottema, R. Z. Djordjevic, R. R. Janié, D. S. Mitrinovié, and P. M. Vasil, Geometric Inequalities, Groningen 1969.

    Google Scholar 

  68. D. Veljan, ‘Zadatak 1018’, Mat.-fiz. list 21 (1970–1971), 78–79.

    Google Scholar 

  69. Zada6a 1330’, Mat. v gkole 1974, No. 1, 63-and No. 5, 87.

    Google Scholar 

  70. M. S. Klamkin and G. Bercea,’ ’ oblem 729’, Elem. Math. 29 (1974), 155 and 30 (1975), 133–134.

    Google Scholar 

  71. W. Mnich; ‘O nierowno§ci Ptolemeusza’, Matematyka 31 (1978), 39–40.

    Google Scholar 

  72. M. S. Klamkin, ‘Triangle Inequalities from the Triangle Inequality’, Elem. Math. 34 (1979), 49–55.

    MathSciNet  MATH  Google Scholar 

  73. M. Dincâ, ‘Extinderi ale teoremi lui Dimitrie Pompeiu’, Gaz. Mat. 84 (1979), 368–370.

    Google Scholar 

  74. M. Dincâ, ‘In legâturâ cu nota matematici “Extinderi ale teoremei lui Dimitrie Pompeiu”’, Gaz. Mat. 85 (1980), 198–199.

    MATH  Google Scholar 

  75. N. Schaumberger and H. Eves, ‘Troblem 187’, College math. J. 1981, 155 and 1982, 278–282.

    Google Scholar 

  76. V. Bazon, ’-in legâturâ cu teorema lui Pompeiu’, Gaz. Mat. 88 (1983), 376–378.

    Google Scholar 

  77. M. Lascu, ‘Asupra unor inegalitâti intr-un tetraedru’, Gaz. Mat. 89 (1984), 397–399.

    Google Scholar 

  78. H. Zhu, ‘A Tetrahedron Inequality’, Math. Gaz. 68 (1984), 200–202.

    Article  MATH  Google Scholar 

  79. I. Pop, ‘In legâturâ cu teorema lui Dimitrie Pompeiu asupra triunghiului echilateral’, Gaz. Mat. 90 (1985), 70–73.

    Google Scholar 

  80. T. Hayashi, ‘Two Theorems on Complex Numbers’, TBhoku math. J. 4 (1913–1914), 68–70.

    Google Scholar 

  81. S. Barnard and J. M. Child, Higher Algebra, London 1949, p. 78.

    Google Scholar 

  82. I. J. Schoenberg, ‘A Remark on M. M. Day’s Characterization of Inner-product Spaces and a Conjecture of L. M. Blumenthal’, Proc. Amer. Math. Soc. 3 (1952), 961–964.

    MathSciNet  MATH  Google Scholar 

  83. D. Pedoe, ‘A Geometric Proof of the Equivalence of Fermat’s Principle and Snell’s Law’, Amer. Math. Monthly 71 (1964), 543.

    Article  MathSciNet  Google Scholar 

  84. T. M. Apostol, ‘Ptolemy’s Inequality arid the Chordal Metric’, Math. Mag. 40 (1967), 233–235.

    Article  MathSciNet  MATH  Google Scholar 

  85. M. S. Tlamkin and A. Meir, ‘Ptolemy’s Inequality, Chordal Metric, Multiplicative Metric’, Pacific J. Math. 101 (1982), 389–392.

    Article  MathSciNet  Google Scholar 

  86. N. Raclin, ‘Théorème de fermeture’, Bull. math. phys. École polytechn. Bucarest 12 (1941), 5–8.

    Google Scholar 

  87. T. Popoviciu, ‘Quelques remarques sur un théorème de M. Pompeiu’, Bull. math. Soc. Roumaine sci. 43 (1941), 27–43.

    Google Scholar 

  88. G. G. Constantinescu, ‘On Some Geometrical Theorems’ (Romanian), Pozitiva 1 (1941), 257–263.

    MathSciNet  Google Scholar 

  89. J. Haantjés, ‘De stelling van Ptolemeus’, Simon Stevin 29 (1952), 25–31.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Volenec, V. (1989). The Möbius-Neuberg and the Möbius-Pompeiu Theorems. In: Recent Advances in Geometric Inequalities. Mathematics and Its Applications, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7842-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7842-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8442-2

  • Online ISBN: 978-94-015-7842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics