Skip to main content

Planetary Periodicities and Terrestrial Climate Stress

  • Chapter
Climatic Changes on a Yearly to Millennial Basis

Abstract

Extraterrestrial climatic stress is applied to the planet Earth by four deterministic processes:

  1. 1.

    Planetary orbital motions, dominated by Jupiter and Saturn, that transmit momentum by gravitational torques, causing changes in velocity and spin rate to successive planets and to the Sun itself. On Earth, spit rate change appear to trigger seismicity and volcanicity (and therefore dust veils).

  2. 2.

    The Sun accordingly develops its own mini-orbit around the systemic barycenter,with abrupt changes in its acceleration and turning angle that are expressed in the Hand 22 yr solar cycle of sunspots, electromagnetic radiation and particulate emissions that reach the Earth and beyond as the “Solar Wind.”

  3. 3.

    The Earth’s geomagnetic field is modulated by the solar wind, which triggers geochemical reactions within the gases of the upper atmosphere. In turn the latter control the stratospheric greenhouse effect, high-altitude clouds and other factors that influence the general circulation. Insolation is further modulated by long-term (10,000 to 100,000 yr) components of orbital motion, eccentricity, tilt and precession, commensurable with category 1 periodicities. The geologic spacing of the great ice ages probably reflects the Galactic Cycle.

  4. 4.

    Lunar tidal cycles, identified in many terrestrial climate series, develop standing waves in the atmosphere and help to trigger major seismic and volcanic events with contribution to the dust veil. The 18.6 yr nodal periodicity also corresponds to a’nutation of the precession parameter and is commensurable in turn with the basic cycles of category 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barta, G., 1956. A 40–50 year period in the secular variation of the geomagnetic field. Acta Geol. (Budapest), 4: 15–52.

    Google Scholar 

  • Berger, A. (ed.), 1981. Climatic Variations and Variability: Facts and Theories. Dordrecht: Reidel.

    Google Scholar 

  • Bray, J.R., 1972. Cyclic temperature oscillations from 0–20,300 yr BP. Nature, 237: 277–279.

    Article  Google Scholar 

  • Brown, E.W., 1896. Introductory Treatise on the Lunar Theory. Dover.

    Google Scholar 

  • Bucha, V., 1977. Mechanism of solar-terrestrial relations and changes of atmospheric circulation. Studia Geophys. et Geodet, 21: 350–360.

    Article  Google Scholar 

  • Bucha, V., 1979. Connections between geophysical and meteorological processes. Studia Geophys. et Geodet, 23: 55–67, 102a–102d.

    Article  Google Scholar 

  • Chernosky, E.J., 1966. Double sunspot-cycle variation in terrestrial magnetic activity, 1884–1963. Jour. Geophys. Res., 71(3): 965–974.

    Article  Google Scholar 

  • Cook, J.W. et al., 1980. Variability of the solar flux in the far ultraviolet 1175–2000 A. Jour. Geophys. Res., 85: 2257–2268.

    Article  Google Scholar 

  • Currie, R.G., 1979. Distribution of solar cycle signal in surface air temperature over North America. Jour. Geoohys. Res., 84: 753–761.

    Article  Google Scholar 

  • Currie, R.G., 1981. Solar cycle signal in earth rotation: non-stationary behavior. Science, 211: 386–389.

    Article  Google Scholar 

  • Currie, R.G., 1984. Evidence for 18.6 year lunar nodal drought in western North America during the past millennium. Jour. Geophys. Res. (in press).

    Google Scholar 

  • Dicke, R.H., 1978. Is there a chronometer hidden deep in the sun? Nature, 276: 676–680.

    Article  Google Scholar 

  • Fairbridge, R.W., 1980. Prediction of long-term geologic and climatic changes that might affect the isolation of radioactive waste. In: Underground Disposal of Radioactive Wastes, v. 2, pp. 385–405. Internat. Atomic Enerqy Agency (IAEA-SM-243/43).

    Google Scholar 

  • Fairbridge, R.W., 1983. The Pleistocene-Holocene boundary. Quaternary Science Reviews, 1: 215–244.

    Article  Google Scholar 

  • Fairbridge, R.W. & Hameed, S., 1983. Phase coherence of solar cycle minima over two 178-year periods. Astron. Jour., 88: 867–869.

    Article  Google Scholar 

  • Fairbridge, R.W. & Hillaire-Marcel, C., 1977. An 8000 yr paleo-climatic record of the “Double Hale” 45 yr solar cycle. Nature, 268: 413–416.

    Article  Google Scholar 

  • Filion, L., 1983. These. Universite Laval (Dep. Geographie), Quebec.

    Google Scholar 

  • Gleissberg, W., 1965. The eighty-year solar cycle in auroral frequency numbers. Brit. Astron. Assoc. Jour., 75: 227–231.

    Google Scholar 

  • Hammer, C.U., Clausen, H.G. & Dansgaard, W., 1980. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature, 288: 230–235.

    Article  Google Scholar 

  • Hays, J.D., Imbrie, J. & Shackleton, N.J., 1976. Variations in the earth’s orbit: pacemaker of the ice ages. Science, 194: 1121–1132.

    Article  Google Scholar 

  • Imbrie, J. & Imbrie, K.P., 1979. Ice ages: solving the mystery. Enslow Publ.

    Google Scholar 

  • Kempe, S. & Degens, E.G., 1979. Varves in the Black Sea and in Lake Van (Turkey. In: Moraines and Varves (ed. C. Schluchter), pp. 309–318. A.A. Balkema

    Google Scholar 

  • Kondratyev, K.Y., 1969. Radiation in the Atmosphere. Academic. Landscheidt, T., 1979. Swinging Sun, 79-year cycle, and climate change. Jour. Interdisc. Cycle Res., 12: 3–19.

    Google Scholar 

  • Milankovitch, M., 1941. Canon of insolation and the ice-age problem. Kon. Serb. Akad. 132 (33).

    Google Scholar 

  • Morth, H.T. & Schlamminger, L., 1979. Planetary motion, sunspots and climate. In: Solar-Terrestrial Influences on Weather and Climate, (ed. B.M. McCormac & T.A. Seliga), pp. 193–207.

    Chapter  Google Scholar 

  • D. Reidel, Pisias, N.G., 1978. Paleoceanography of the Santa Barbara Basin during the last 8,000 years. Quaternary Research, 10: 366–384.

    Article  Google Scholar 

  • Roy, A.E., 1977. Orbital Motion. Wiley.

    Google Scholar 

  • Schove, D.J., 1978. Tree-ring and varve scales combined, c.13,500 B.C. to A.D. 1977. Pal. Pal. Pal., 25: 209–233.

    Article  Google Scholar 

  • Schove, D.J., 1983. Sunspot Cycles. Hutchinson & Ross Publ. (Benchmark Vol. 38).

    Google Scholar 

  • Schove, D.J. & Fairbridge, R.W. (eds.), 1984. Ice-cores, Varves and Tree-rings. Balkema.

    Google Scholar 

  • Schuurmans, C.J.E., 1981. Solar activity and climate. In: Climatic Variations and Variability: Facts and Theories (ed. A. Berger), pp. 559–575.

    Chapter  Google Scholar 

  • D. Reidel, Siscoe, G.L., 1980. Evidence in the auroral record for secular solar variability. Rev. Geophys. and Space Phys., 18: 647–658.

    Article  Google Scholar 

  • Sonett, C.P. & Suess, H.E., 1984. Correlation of bristlecone pine ring widths with atmospheric 14-C variations: a climate-Sun relation. Nature, 307: 141–143.

    Article  Google Scholar 

  • Stuiver, M. & Quay, P.D., 1980. Changes in atmospheric carbon-14 attributed to a variable sun. Science, 207: 11–19

    Article  Google Scholar 

  • Von Humboldt, A., 1871. Kosmos (trans. E.C. Otte & B.H. Paul). Belle, v. 4.

    Google Scholar 

  • Wittman, A., 1978. The sunspot cycle before the MaunderMinimum. Astron. & Astrophysics, 66: 93–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fairbridge, R.W. (1984). Planetary Periodicities and Terrestrial Climate Stress. In: Mörner, NA., Karlén, W. (eds) Climatic Changes on a Yearly to Millennial Basis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7692-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7692-5_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8399-9

  • Online ISBN: 978-94-015-7692-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics