Skip to main content

Effects of Freeze Preservation on Nutrients

  • Chapter
Nutritional Evaluation of Food Processing

Abstract

The handling, storage, and preservation of food often involves changes in nutritive value, most of which are undesirable. The freezing process (prefreezing treatments, freezing, frozen storage, and thawing), if properly conducted, is generally regarded as the best method of long-term food preservation when judged on the basis of retention of sensory attributes and nutrients. The freezing process is, however, not perfect, as is apparent from the fact that substantial amounts of the more labile nutrients can be lost. Vitamin losses during freezing preservation vary greatly depending on the food, the package, and the conditions of processing and storage. Losses of nutrients can result from physical separation (e.g., peeling and trimming during the prefreezing period, or exudate loss during thawing), leaching (especially during blanching), or chemical degradation. The seriousness of these losses depends on the nutrient (whether it is abundant or meager in the average diet), and on the particular food item (whether it generally supplies a major or a minor amount of the nutrient in question).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, C. I. 1975. The ascorbic acid content of quick frozen brussels sprouts. J. Food Technol. 10, 203–213.

    Google Scholar 

  • Adams, C. F. 1975. Nutritive value of American foods in common units. In Agriculture Handbook 456. USDA, Washington, DC.

    Google Scholar 

  • Barnes, B., and Tressler, D. K. 1943. Thiamin content of fresh and frozen peas and corn before and after cooking. Food Res. 8, 420–427.

    Google Scholar 

  • Batchelder, E. L., Kirkpatrick, M.E., Stein, K.E., and Marron, I. M. 1947. Effect of scalding method on the quality of three home-frozen vegetables. J. Home Econ. 39, 282–286.

    Google Scholar 

  • Bauernfeind, J. C., and Pinkert, D. M. 1970. Food processing with added ascorbic acid. Advan. Food Res. 18, 219–315.

    Google Scholar 

  • Bauernfeind, J. C., Jahns, F.W., Smith, E.G., and Siemers, G.F. 1946. Vitamin C stability in frozen fruit processed with crystalline L-ascorbic acid. Fruit Prod. J. 25, 324–330, 347.

    Google Scholar 

  • Bedford, C. L., and Hard, M. M. 1950. The effect of cooling method on the ascorbic acid and carotene content of spinach, peas, and snap beans preserved by freezing. Proc. Am. Soc. Hort. Sci. 55, 403–409.

    Google Scholar 

  • Bendall, J. R. 1972. Postmortem changes in muscle. In The Structure and Function of Muscle. Vol. 2, Part 2. G. H. Bourne (Editor). Academic Press, New York.

    Google Scholar 

  • Bennett, G., et al. 1954. Some factors affecting the quality of frozen foods. II. Penn State Coll. Agric. Exp. Stn. Bull. 580.

    Google Scholar 

  • Boggs, M. M., et al. 1960. Time-temperature tolerance of frozen foods. XXI. Frozen peas. Food Technol. 14, 181–185.

    Google Scholar 

  • Botta, J. R., Richards, J. F., and Tomlinson, N. 1973. Flesh pH, color; thaw drip, and mineral concentration of Pacific halibut (Hippoglossus stenolepis) and Chinook salmon (Oncorhynchus tshawytscha) frozen at sea. J. Fish. Res. Bd. Can. 30, 71–77.

    Google Scholar 

  • Burger, M., et al. 1956. Vitamin, mineral, and proximate composition of frozen fruits, juices, and vegetables. J. Agric. Food Chem. 4, 418–425.

    Google Scholar 

  • Chick, H., and Roscoe, M. H. 1926. LXXXIV. Influence of diet and sunlight upon the amount of vitamin A and vitamin D in the milk afforded by a cow. Biochem. J. 20, 632–649.

    Google Scholar 

  • Cook, B. B., Morgan, A. F., and Smith, M.B. 1949. Thiamin, riboflavin, and niacin content of turkey tissues as affected by storage and cooking. Food Res. 14, 449–458.

    Google Scholar 

  • Cook, B. B., Gunning, B., and Uchimoto, D. 1961. Variations in nutritive value of frozen green baby lima beans as a result of methods of processing and cooking. J. Agric. Food Chem. 9, 316–321.

    Google Scholar 

  • Cook, G. A., Love, E. F. J., Vickery, J. R., and Young, W. J. 1926. Studies on the refrigeration of meat. I. Investigations into the refrigeration of beef. Australian J. Exp. Biol. Med. 3, 15–31.

    Google Scholar 

  • Crigler, J. C., and Dawson, L. E. 1968. Cell disruption in broiler breast muscle related to freezing time. J. Food Sci. 33, 248–250.

    Google Scholar 

  • Crivelli, G., Rosati, P., and Monzini, A. 1969. Chemical stability of frozen strawberries during storage. In Frozen Foods. International Institute of Refrigeration, Paris, France.

    Google Scholar 

  • Crow, L. S., and Scoular, F. I. 1955. Effects of antioxidant ascorbic acid upon the ascorbic acid content of certain frozen fruits. J. Home Econ. 47, 259–260.

    Google Scholar 

  • Dawson, E. H., Reynolds, H., and Toepfer, E. W. 1949. Home-canned versus home-frozen snap beans. J. Home Econ. 41, 572–574.

    Google Scholar 

  • De Groot, A. P. 1963. The influence of dehydration of foods on the digestibility and the biological value of the proteins. Food Technol. 17, 339–343.

    Google Scholar 

  • Derse, P. H., and Teply, L. J. 1958. Effect of storage conditions on nutrients in frozen green beans, peas, orange juice, and strawberries. J. Agric. Food Chem. 6, 309–312.

    Google Scholar 

  • Deuel, H. J., Jr., and Greenberg, S.M. 1953. A comparison of the retention of vitamin A in margarines and in butters based upon bioassays. Food Res. 18, 497–503.

    Google Scholar 

  • Dietrich, W. C., and Neumann, H. J. 1965. Blanching brussels sprouts. Food Technol. 19, 1174–1177.

    Google Scholar 

  • Dietrich, W. C., et al 1957. The time-temperature tolerance of frozen foods. IV. Objective tests to measure adverse changes in frozen vegetables. Food Technol. 11, 109–113.

    Google Scholar 

  • Dietrich, W.C., et al. 1959. Time-temperature tolerance of frozen foods. XIV. Quality retention of frozen green snap beans in retail packages. Food Technol. 13, 136–145.

    Google Scholar 

  • Dietrich, W. C., Boggs, M. M., Nutting, M-D. F., and Weinstein, N. E. 1960. Time-temperature tolerance of frozen foods. XXIII. Quality changes in frozen spinach. Food Technol. 14, 522–527.

    Google Scholar 

  • Dietrich, W. C., Nutting, M-D. F., Boggs, M. M., and Weinstein, N. E. 1962. Time-temperature tolerance of frozen foods. XXIV. Quality changes in cauliflower. Food Technol. 16, 123–128.

    Google Scholar 

  • DuBois, C. W., and Colvin, D. L. 1945. Loss of added vitamin C in the storage of peaches. Fruit Prod. J. Am. Food Mfgr. 25, 101–103.

    Google Scholar 

  • Dudek, J. A., Behl, B. A., Elkins, E. R., Hagen, R. E., and Chin, H. B. 1981. Determination of effects of processing and cooking on the nutrient composition of selected seafoods. National Food Processors Assoc, Washington, DC.

    Google Scholar 

  • Dudek, J. A., Elkins, E. R., Chin, H. B„ and Hagen, R. 1982A. Investigations to determine nutrient content of selected fruits and vegetables—raw, processed and prepared. National Food Processors Assoc, Washington, DC..

    Google Scholar 

  • Dudek, J. A., Berman, S. C., Behl, B. A., Elkins, E. R., Chin, H. B., and Farrow, R. P. 1982B. Determination of effects of processing and cooking on the nutrient composition of selected seafoods. National Food Processors Assoc, Washington, DC.

    Google Scholar 

  • Eheart, M. S. 1967. Effect of microwave vs. water-blanching on nutrients in broccoli. J. Am. Diet. Assoc. 50, 207–211.

    Google Scholar 

  • Eheart, M. S. 1970. Effect of storage and other variables on composition of frozen broccoli. Food Technol. 24, 1009–1011.

    Google Scholar 

  • Engler, P. P., and Bowers, J. A. 1975. Vitamin Be content of turkey cooked from frozen, partially frozen and thawed states. J. Food Sci. 40, 615–617.

    Google Scholar 

  • Fagerson, I. S., Anderson, E. E., Hayes, K. M., and Fellers, C. R. 1954. Vitamin C and frozen strawberries. Quick Frozen Foods 16(9), 84–85.

    Google Scholar 

  • Farrell, K. T., and Fellers, C. R. 1942. Vitamin content of green snap beans. Influence of freezing, canning and dehydration on the content of thiamin, riboflavin and ascorbic acid. Food Res. 7, 171–177.

    Google Scholar 

  • Feaster, J. F., Mudra, A. E., Ives, M., and Tompkins, M. D. 1949. Effect of blanching time on vitamin retention in canned peas. Canner 108(1), 27–30.

    Google Scholar 

  • Fennema, O., Powrie, W. D., and Marth, E. H. 1973. Low-Temperature Preservation of Foods and Living Matter. Marcel Dekker, New York.

    Google Scholar 

  • Fenton, F., and Tressler, D. K. 1938. Losses of vitamin C during commercial freezing, defrosting and cooking of frosted peas. Food Res. 3, 409–416.

    Google Scholar 

  • Fieger, E. A. 1956. Vitamin content of fresh, frozen oysters. Quick Frozen Foods 29(4), 152, 155.

    Google Scholar 

  • Fisher, W. B., and Van Duyne, F. O. 1952. Effect of variations in blanching on quality of frozen broccoli, snap beans, and spinach. Food Res. 17, 315–325.

    Google Scholar 

  • Fitting, K. O., and Miller, C. D. 1960. The stability of ascorbic acid in frozen and bottled acerola juice alone and combined with other fruit juices. Food Res. 25, 203–210.

    Google Scholar 

  • Gebhardt, S. E., Cutrufelli, R., and Matthews, R. H. 1982. Composition of foods: fruits and fruit juices. Agriculture Handbook 8–9. USDA, Washington, DC.

    Google Scholar 

  • Golovkin, N. A., and Meluzova, L. A. 1974. Effect of temperature conditions on the enzymatic degradation of myofibrillar proteins at long-time meat storage. Proc. Fourth Int. Cong. Food Sci. Technol. 1, 641–647.

    Google Scholar 

  • Gordon, J., and Noble, I. 1959. Effects of blanching, freezing, freezing-storage and cooking on ascorbic acid retention in vegetables. J. Home Econ. 51, 867–870.

    Google Scholar 

  • Gortner, W. A., Fenton, F., Volz, F. E., and Gleim, E. 1948. Effect of fluctuating storage temperatures on quality of frozen foods. Ind. Eng. Chem. 40, 1423–1426.

    Google Scholar 

  • Guadagni, D. G., and Nimmo, C. C. 1957. The time-temperature tolerance of frozen foods. III. Effectiveness of vacuum, oxygen removal, and mild heat in controlling browning in frozen peaches. Food Technol. 11, 43–47.

    Google Scholar 

  • Guadagni, D. G., and Nimmo, C. C. 1958. Time-temperature tolerance of frozen foods. XIII. Effect of regularly fluctuating temperatures in retail packages of frozen strawberries and raspberries. Food Technol. 12, 306–310.

    Google Scholar 

  • Guadagni, D. G., Nimmo, C. C., and Jansen, E. F. 1957A. The time-temperature tolerance of frozen foods. II. Retail packages of frozen peaches. Food Technol. 11, 33–42.

    Google Scholar 

  • Guadagni, D. G., Nimmo, C. C., and Jansen, E. F. 1957B. Time-temperature tolerance of frozen foods. VI. Retail packages of frozen strawberries. Food Technol. 11, 389–397.

    Google Scholar 

  • Guadagni, D. G., Nimmo, C. C., and Jansen, E. F. 1957C. Time-temperature tolerance of frozen foods. X. Retail packs of frozen red raspberries. Food Technol. 11, 633–637.

    Google Scholar 

  • Guadagni, D. G., Eremia, K. M., Kelly, S. H., and Harris, J. 1960. Time-temperature tolerance of frozen foods. XX. Boysenberries. Food Technol. 14, 148–150.

    Google Scholar 

  • Guadagni, D. G., Downes, N. J., Sanshuck, D. W., and Shinoda, S. 1961. Effect of temperature on stability of commercially frozen bulk pack fruits—strawberries, raspberries and blackberries. Food Technol. 15, 207–209.

    Google Scholar 

  • Guerrant, N. B. 1957. Changes in light reflectance and ascorbic acid content of foods during frozen storage. J. Agric. Food Chem. 5, 207–212.

    Google Scholar 

  • Guerrant, N. B., and Dutcher, R. A. 1948. Further observations concerning the relationship of temperature of blanching to ascorbic acid retention in green beans. Arch. Biochem. 18, 353–359.

    Google Scholar 

  • Guerrant, N. B., and O’Hara, M. B. 1953. Vitamin retention in peas and lima beans after blanching, freezing, processing in tin and in glass, after storage and after cooking. Food Technol. 7, 473–477.

    Google Scholar 

  • Guerrant, N. B., et al. 1947. Effect of duration and temperature of blanch on vitamin retention by certain vegetables. Ind. Eng. Chem. 39, 1000–1007.

    Google Scholar 

  • Guerrant, N. B., et al. 1953. Some factors affecting the quality of frozen foods. Penn State Coll. Agric. Exp. Stn. Bull. 565.

    Google Scholar 

  • Gustafson, F. G., and Cooke, A. R. 1952. Oxidation of ascorbic acid to dehydro- ascorbic acid at low temperatures. Science 116, 234.

    Google Scholar 

  • Hartzler, E. R., and Guerrant, N. B. 1952. Effect of blanching and of frozen storage of vegetables on ascorbic acid retention and on the concomitant activity of certain enzymes. Food Res. 17, 15–23.

    Google Scholar 

  • Holmes, A. D., et al. 1945. Vitamin content of field-frozen kale. Am. J. Diseases Children 70, 298–300.

    Google Scholar 

  • Holmes, A. D., Kuzmeski, J. W., and Canavan, F. T. 1946. Stability of vitamins in stored ice cream. J. Am. Diet. Assoc. 22, 670–672.

    Google Scholar 

  • Holmquist, J. W., Clifcorn, L. E., Heberlein, D. G., and Schmidt, C. F. 1954. Steam blanching of peas. Food Technol. 8, 437–445.

    Google Scholar 

  • Howard, A., Lawrie, R. A., and Lee, C. A. 1960. Studies on beef quality. VIII. Some observations on the nature of drip. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Huggart, R. L., Harman, D. A., and Moore, E. L. 1954. Ascorbic acid retention in frozen concentrated citrus juices. J. Am. Diet. Assoc. 30, 682–684.

    Google Scholar 

  • Jenkins, R. R., and Tressler, D. K. 1938. Vitamin C content of vegetables. VIII. Frozen peas. Food Res. 3, 133–140.

    Google Scholar 

  • Jenkins, R. R., Tressler, D. K., Moyer, J., and Mcintosh, J. 1940. Storage of frozen vegetables. Vitamin C experiments. Refrig. Eng. 39, 381–382.

    Google Scholar 

  • Juries, E. W. 1970. Comparative investigations of the vitamin C contents of frozen and fresh vegetables in the raw and cooked states. (German). Nahrung 14, 107–114.

    Google Scholar 

  • Kahn, L. N., and Livingston, G. E. 1970. Effect of heating methods on thiamin retention in fresh or frozen prepared food. J. Food Sci. 35, 349–351.

    Google Scholar 

  • Kawar, N. S., DeBatista, G. C., and Guther, F. A. 1973. Pesticide stability in cold-stored plant parts, soils and dairy products, and in cold-stored extractive solutions. Residue Rev. 48, 54–77.

    Google Scholar 

  • Khan, A. W., and Lentz, C. P. 1965. Influence of prerigor, rigor and postrigor freezing on drip losses and protein changes in chicken meat. J. Food Sci. 30, 787–790.

    Google Scholar 

  • Khan, A. W., and van den Berg, L. 1967. Biochemical and quality changes occurring during freezing of poultry meat. J. Food Sci. 32, 148–150.

    Google Scholar 

  • Kilgore, L., and Windham, F. 1970. Disappearance of Malathion residue in broccoli during cooking and freezing. J. Agric. Food Chem. 18, 162–163.

    Google Scholar 

  • Kotschevar, L. H. 1955. B-vitamin retention in frozen meat. J. Am. Diet. Assoc. 31, 589–596.

    Google Scholar 

  • Kramer, A. 1977. Effect of storage on nutritive value of food. J. Food Quality 1, 23–55.

    Google Scholar 

  • Kramer, A., King, R. L., Westhoff, D. C, Olowofoyeku, A. K., and Farquhar, J. W. 1979. 18-Month storage study of prepared frozen foods containing protein concentrates. ASHRAE Trans. 85, 31–55.

    Google Scholar 

  • Lamb, F. C., Lewis, L. D., and Lee, S. K. 1948. Effect of blanching on retention of ascorbic acid and thiamin in peas. West. Canner Packer 5, 60–62.

    Google Scholar 

  • Lane, J. P. 1966. Time-temperature tolerance of frozen seafoods. Food Technol. 20, 549–553.

    Google Scholar 

  • Larson, E. R. 1956. Vitamin losses in the drip from thawed, frozen poultry. J. Am. Diet. Assoc. 32, 716–718.

    Google Scholar 

  • Lawrence, J. M., Herrington, B. L., and Maynard, L. A. 1946. The nicotinic acid, biotin and pantothenic acid content of cows’ milk. J. Nutr. 32, 73–91.

    Google Scholar 

  • Lee, F. A., and Whitcombe, J. 1945. Blanching of vegetables for freezing. Effect of different types of potable water on nutrients of peas and snap beans. Food Res. 10, 465–468.

    Google Scholar 

  • Lee, F. A., Gortner, W. A., and Whitcombe, J. 1946. Effect of freezing rate on vegetables. Ind. Eng. Chem. 38, 341–346.

    Google Scholar 

  • Lee, F. A., et al. 1950. Effect of freezing rate on meat. Appearance, palatability and vitamin content of beef. Food Res. 15, 8–15.

    Google Scholar 

  • Lee, F. A., et al. 1954. Effect of rate of freezing on pork quality. J. Am. Diet. Assoc. 30, 351–354.

    Google Scholar 

  • Lehrer, W. P., Jr., Wiese, A. C., Harvey, W. R., and Moore, P. R. 1951. Effect of frozen storage and subsequent cooking on the thiamin, riboflavin, and nicotinic acid content of pork chops. Food Res. 16, 485–491.

    Google Scholar 

  • Lehrer, W. P., Jr., Wiese, A. C., Harvey, W. R., and Moore, P. R. 1952. Thestability of thiamin, riboflavin and nicotinic acid of lamb chops during frozen storage and subsequent cooking. Food Res. 17, 24–30.

    Google Scholar 

  • Lindquist, F. E., Dietrich, W. C., and Boggs, M. M. 1950. Effect of storage temperature on quality of frozen peas. Food Technol. 4, 5–9.

    Google Scholar 

  • Loeffler, H. J. 1946. Retention of ascorbic acid in raspberries during freezing, frozen storage, pureeing and manufacture into velva fruit. Food Res. 11, 507–515.

    Google Scholar 

  • Love, R. M. 1958. Expressible fluid of fish fillets. VIII. Cell damage in slow freezing. J. Sci. Food Agric. 9, 257–262.

    Google Scholar 

  • Lowenberg, M. E., and Wilson, E. D. 1959. Nutrients in frozen foods. Natl. Assoc. Frozen Food Packers, Washington DC.

    Google Scholar 

  • Manohar, S. V., Rigby, D. L., and Dugal, L. C. 1973. Effect of sodium tripolyphosphate on thaw drip and taste of fillets of some freshwater fish. J. Fish. Res. Bd. Can. 30, 685–688.

    Google Scholar 

  • Marshall, J. R., Hayes, K. M., Fellers, C. R., and DuBois, C. W. 1955. Stability of ascorbic acid in citrus concentrates during storage. Quick Frozen Foods 17(12), 50–52, 129.

    Google Scholar 

  • Martin, M. E., Sweeney, J. P., Gilpin, G. L., and Chapman, V. J. 1960. Factors affecting the ascorbic acid and carotene content of broccoli. J. Agric. Food Chem. 8, 387–390.

    Google Scholar 

  • McColloch, R. J., Rice, R. G., Bandurski, M. B., and Gentili, B. 1957. Time-temperature tolerance of frozen foods. VII. Frozen concentrated orange juice. Food Technol. 11, 444–449.

    Google Scholar 

  • Melnick, D., Hochberg, M., and Oser, B. L. 1944. Comparative study of steam and hot water blanching. Food Res. 9, 148–153.

    Google Scholar 

  • Meluzova, L. A. 1977. Effect of mucopolysaccharide contents in intramuscular connective tissues on nutritive value of myofibrillar proteins during meat storage at low temperatures. In Freezing, Frozen Storage and Freeze-Drying of Biological Materials and Foodstuffs, pp. 145–152. International Institute of Refrigeration, Paris.

    Google Scholar 

  • Meyer, B., Mysinger, M., and Buckley, R. 1963. The effect of three years of freezer storage on the thiamin, riboflavin and niacin content of ripened and unripened beef. J. Agric. Food Chem. 11, 525–527.

    Google Scholar 

  • Meyer, B. H., Mysinger, M. A., and Cole, J.W. 1966. Effect of finishing and ripening on vitamin B6 and pantothenic acid content of beef. J. Agric. Food Chem. 14, 485–486.

    Google Scholar 

  • Miliares, R., and Fellers, C. R. 1949. Vitamin and amino acid content of processed chicken meat products. Food Res. 14, 131–143.

    Google Scholar 

  • Miyauchi, D. 1962. Application of centrifugal method for measuring shrinkage during the thawing and heating of frozen cod fillets. Food Technol. 16(1), 70–72.

    Google Scholar 

  • Moleeratanond, W., Ashby, B. H., Kramer, A., Berry, B. W., and Lee, W. 1981. Effect of a di-thermal storage regime on quality and nutritional changes and energy consumption of frozen boxed beef. J. Food Sci. 46, 829–833, 837.

    Google Scholar 

  • Morgan, A. F., et al. 1949. Thiamin, riboflavin and niacin content of chicken tissues, as affected by cooking and frozen storage. Food Res. 14, 439–448.

    Google Scholar 

  • Morrison, M. H. 1974. The vitamin C contents of quick frozen peas. J. Food Technol. 9, 491–500.

    Google Scholar 

  • Morrison, M. H. 1975. The vitamin C content of quick frozen green beans. J. Food Technol. 10, 19–28.

    Google Scholar 

  • Moyer, J. C., and Stotz, E. 1945. Electronic blanching of vegetables. Science 102, 68–69.

    Google Scholar 

  • Moyer, J. C., and Tressler, D. K. 1943. Thiamin content of fresh and frozen vegetables, Food Res. 8, 58–61.

    Google Scholar 

  • Nestorov, N., et al. 1969. Proc. Eur. Mktg. Meat Res. Workers 15, 110. Cited by Burger, I. H., and Walters, C. L. 1973. The effect of processing on the nutritive value of flesh foods. Proc. Nutr. Soc. 32, 1–8.

    Google Scholar 

  • Noble, I., and Gordon, J. 1964. Effect of blanching method on ascorbic acid and color of frozen vegetables. J. Am. Diet. Assoc. 44, 120–123.

    Google Scholar 

  • O’Brien, J. J., Campbell, N., and Conaghan, T. 1981. Effect of cooking and cold storage on biologically active antibiotic residues in meat. J. Hyg. (Cambridge) 87, 511–523.

    Google Scholar 

  • Odland, D., and Eheart, M. S. 1975. Ascorbic acid, mineral and quality retention in frozen broccoli blanched in water, steam and ammonia-steam. J. Food Sci. 40, 1004–1007.

    Google Scholar 

  • Pala, M. 1983. Effect of different pretreatments on the quality of deep frozen green beans and carrots. Int. J. Refrig. 6(4), 238–246.

    Google Scholar 

  • Payne, I. R. 1967. Ascorbic acid retention in frozen corn. J. Am. Diet. Assoc. 51, 344–348.

    Google Scholar 

  • Pearson, A.M., and Miller, J. I. 1950. The influence of rate of freezing and length of freezer-storage upon the quality of beef of unknown origin. J. Anim. Sci. 9, 13–19.

    Google Scholar 

  • Pearson, A. M., et al. 1951. Vitamin losses in drip obtained upon defrosting frozen meat. Food Res. 16, 85–87.

    Google Scholar 

  • Pearson, A. M., West, R. G., and Luecke, R. W. 1959. The vitamin and amino acid content of drip obtained upon defrosting frozen pork. Food Res. 24, 515–519.

    Google Scholar 

  • Phillips, M. G., and Fenton, F. 1945. Effects of home freezing ancj cooking on snap beans: Thiamin, riboflavin, ascorbic acid. J. Home Econ. 3 7, 164–170.

    Google Scholar 

  • Pierce, R. T., Shaw, M. D., Heck, J. G., and Bennett, G. 1955. Small storage temperature differences can affect the quality of frozen strawberries and green beans. Refrig. Engr. 63(11), 52–57.

    Google Scholar 

  • Pincock, R. E., and Kiovsky, T. E. 1966. Kinetics of reactions in frozen solutions. J. Chem. Educ. 43, 358–362.

    Google Scholar 

  • Proctor, B. E., and Goldblith, S. A. 1948. Radar energy for rapid food cooking and blanching, and its effect on vitamin content. Food Technol. 2, 95–104.

    Google Scholar 

  • Ramsbottom, J. M., and Koonz, C. H. 1939. Freezing temperature as related to drip of frozen-defrosted beef. Food Res. 4, 425–431.

    Google Scholar 

  • Ramsbottom, J. M., and Koonz, C. H. 1940. Relationship between time of freezing beef after slaughter and amount of drip. Food Res. 5, 423–429.

    Google Scholar 

  • Ramsbottom, J. M., and Koonz, C. H. 1941. Freezer storage temperature as related to drip and color in frozen-defrosted beef. Food Res. 6, 571–580.

    Google Scholar 

  • Retzer, J. L., Van Duyne, F. O., Chase, J. T., and Simpson, J. I. 1945. Effect of steam and hot-water blanching on ascorbic acid content of snap beans and cauliflower. Food Res. 10, 518–524.

    Google Scholar 

  • Richardson, L. R., Wilkes, S., and Ritchey, S. J. 1961A. Comparative vitamin B6 activity of frozen, irradiated and heat-processed foods. J. Nutr. 73, 363–368.

    Google Scholar 

  • Richardson, L. R., Wilkes, S., and Ritchey, S. J. 1961B. Comparative vitamin K activity of frozen, irradiated and heat-processed foods. J. Nutr. 73, 369–373.

    Google Scholar 

  • Sair, L., and Cook, W. H. 1938. Relation of pH to drip formation in meat. Can. J. Res. 16D, 255–267.

    Google Scholar 

  • Samuels, C. E., and Wiegand, E. H. 1948. Radiofrequency blanching of cut corn and freestone peaches. Fruit Prod. J. Am. Food Mfgr. 28, 43–44, 61.

    Google Scholar 

  • Scott, L. E., and Schrader, A. L. 1947. Ascorbic acid content of strawberry varieties before and after processing by freezing. Proc. Am. Soc. Hort. Sci. 50, 251–253.

    Google Scholar 

  • Secomska, B., Iwanska, W., and Nadolna, I. 1973. Retention of some vitamins in cooked potatoes stored in the frozen state. Thirteenth Int. Cong. Refrig. 3, 311–316.

    Google Scholar 

  • Singh, S. P., and Essary, E. O. 1971A. Influence of thawing methods on the composition of drip from broiler carcasses. Poult. Sci. 50, 364–369.

    Google Scholar 

  • Singh, S. P., and Essary, E. O. 1971B. Vitamin content of broiler meat as affected by age, sex, thawing and cooking. Poult. Sci. 50, 1150–1155.

    Google Scholar 

  • Stimson, C. R., and Tressler, D. K. 1939. Carotene (vitamin A) content of fresh and frozen peas. Food Res. 4, 475–483.

    Google Scholar 

  • Strachan, C. C., and Moyls, A. W. 1949. Ascorbic, citric and dihydroxymaleic acids as antioxidants in frozen pack fruits. Food Technol. 3, 327–332.

    Google Scholar 

  • Sulc, S. 1973. Influence of different freezing methods/temperature and time, on the preservation of important factors. Thirteenth Int. Cong. Refrig. 3, 447–454.

    Google Scholar 

  • Sweeney, J. P., and Marsh, A. C. 1971. Effect of processing on provitamin A in vegetables. J. Am. Diet. Assoc. 59, 238–243.

    Google Scholar 

  • Sweeney, J. P., Chapman, V. J., Martin, M. E., and Dawson, E. H. 1961. Quality of frozen vegetables purchased in selected retail markets. Food Technol. 15, 341–345.

    Google Scholar 

  • Tanaka, K., and Tanaka, T. 1956A. Defrosting of frozen whale meat. J. Tokyo Coll. Fish. 42, 80–82.

    Google Scholar 

  • Tanaka, K., and Tanaka, T. 1956B. Biochemical condition of whalemeat before or after freezing and cold storage of frozen meat. J. Tokyo Coll. Fish. 42, 83–88.

    Google Scholar 

  • Tanaka, K., and Tanaka, T. 1957. Drip from frozen whalemeat affected by freezing rate and air temperature in air defrosting. J. Tokyo Coll. Fish. 43, 19–23.

    Google Scholar 

  • Teply, L. J., and Derse, P. H. 1958. Nutrients in cooked frozen vegetables. J. Am. Diet. Assoc. 34, 836–840.

    Google Scholar 

  • Thompson, L. U., and Fennema, O. 1971. Effect of freezing on oxidation of L- ascorbic acid. J. Agric. Food Chem. 19, 121–124.

    Google Scholar 

  • Tingleff, A. J., and Miller, E. V. 1960. Studies on ascorbic acid retention in frozen juice, segments, and whole oranges. Food Res. 25, 145–147.

    Google Scholar 

  • Tinklin, G. L. and Filinger, G. A. 1956. Effects of different methods of blanching on the quality of home frozen spinach. Food Technol. 10, 198–201.

    Google Scholar 

  • Tressler, D. K., Mack, G. L., and King, C. G. 1936. Factors influencing the vitamin C content of vegetables. Am. J. Public Health 26, 905–909.

    Google Scholar 

  • Tressler, D. K., Mack, G. L., and Jenkins, R. R. 1937. Vitamin C in vegetables. VII. Lima beans. Food Res. 2, 175–181.

    Google Scholar 

  • U.S. Department of Agriculture (USDA). 1976–1982. Composition of Foods. In Agricultural Handbook 8–1 through 8–9. USDA, Washington, DC.

    Google Scholar 

  • Vail, G. E., Jeffrey, M., Forney, H., and Wiley, C. 1943. Effect of method of thawing upon losses, shear, and press fluid of frozen beefsteaks and pork roast. Food Res. 8, 337–342.

    Google Scholar 

  • van der Meer, M. A., Lassche, M. J. B., and Pashcha, C. N. 1973. Nutritive value and sensory qualities of deep-frozen components of meals and the effect of three reheating methods on these properties. (Dutch). Voeding 34, 2–15.

    Google Scholar 

  • Van Duyne, F. O., Wolfe, J. C., and Owen, R. F. 1950. Retention of riboflavin in vegetables preserved by freezing. Food Res. 15, 53–61.

    Google Scholar 

  • Volz, F. E., Gortner, W. A., and Delwiche, C. V. 1949. The effect of desiccation on frozen vegetables. Food Technol. 3, 307–313.

    Google Scholar 

  • von Kamienski, E. S. 1969. Retention of vitamin C during the processing of frozen spinach. In Frozen Foods. International Institute of Refrigeration, Paris.

    Google Scholar 

  • von Kamienski, E. S. 1972. Retention of vitamin C during the processing of frozen spinach. Sci. Aliment. 28(7), 243–244.

    Google Scholar 

  • Wedler, A. 1971. Results of experiments on the change in contents of nutritional compounds through processing and preparation of vegetables. Qual. Plant. Mater. Veg. 22(1–2), 79–95.

    Google Scholar 

  • Weits, J., van der Meer, M. A., and Lassche, J. B. 1970. Nutritive value and organoleptic properties of three vegetables fresh and preserved in six different ways. Int. Z. Vitaminforsch. 40, 648–658.

    Google Scholar 

  • Westerman, B. D., Vail, G. E., Tinklin, G. L., and Smith, J. 1949. B-complex vitamins in meat. II. The influence of different methods of thawing frozen steaks upon their palatability and vitamin content. Food Technol. 3, 184–187.

    Google Scholar 

  • Westerman, B. D., et al. 1952. B-complex vitamins in meat. III. Influence of storage temperature and time on the vitamins in pork muscle. J. Am. Diet. Assoc. 28, 49–52.

    Google Scholar 

  • Westerman, B. D., Oliver, B., and MacKintosh, D. L. 1955. Influence of chilling rate and frozen storage on B-complex vitamin content of pork. J. Agric. Food Chem. 3, 603–605.

    Google Scholar 

  • Wolfe, J. C., Owen, R. F., Charles, V. R., and Van Duyne, F. O. 1949. Effect of freezing and freezer storage on the ascorbic acid content of muskmelon, grapefruit sections, and strawberry puree. Food Res. 14, 243–252.

    Google Scholar 

  • Zimmerman, W. I., Tressler, D. K., and Maynard, L. A. 1940. Determination of carotene in fresh and frozen vegetables. 1. Carotene content of green snap beans and sweet corn. Food Res. 5, 93–101.

    Google Scholar 

  • Zscheile, F. P., Beadle, B. W., and Kraybill, H. R. 1943. Carotene content of fresh and frozen green vegetables. Food Res. 8, 299–313.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Fennema, O. (1988). Effects of Freeze Preservation on Nutrients. In: Karmas, E., Harris, R.S. (eds) Nutritional Evaluation of Food Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7030-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7030-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7032-1

  • Online ISBN: 978-94-011-7030-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics