Skip to main content

The Binding of Transition Metal Ions to DNA Oligonucleotides Studied by Nuclear Magnetic Resonance Spectroscopy

  • Chapter
Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

  • 340 Accesses

Abstract

Trace amounts of metals determine not only the course of malignancy, but they can be the cause of malignant transformation [1]. The molecular mechanism of metal ion carcinogenesis is still not well understood. Several theories have been proposed to explain the carcinogenic activities of the respective metals. However, at present, no unifying concept has been developed to explain why metals or metal-containing compounds induce cancer in animals. Especially puzzling is the fact that closely related metal species have widely different carcinogenic properties. In a comparison of metal carcinogenicity in humans based on several experimental factors Cr and Ni turned out to be the most potent carcinogens [2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronikashvili, E. L. and Monaselidze, J. R. (1973) Human leukemia and trace elements, in H. Sigel (ed.). Metal Ions in Biological Systems, Marcel Dekker, New York. pp. 167–206.

    Google Scholar 

  2. Flessel, C P., Furst, A. and Radding, S. B. (1973) A comparison of carcinogenic metals, in H. Sigel (ed.). Metal Ions in Biological Systems, Marcel Dekker, New York, pp. 23–54.

    Google Scholar 

  3. Eichhorn, G.L. and Shin, Y.A. (1968) The Relative Effect of Various Meta Ions on DNA Helicity. J. Am.Chem Soc. 90, 7323–7328.

    Article  CAS  Google Scholar 

  4. Sip, M., Schwartz, A. Vovelle, F., Ptak, M. and Leng, M. (1992) Distortions Induced in DNA by cis Platinum Interstrand Adducts, Biochemistry 31, 2508–2513.

    Article  CAS  Google Scholar 

  5. Narasimhan, V. and Bryan, A. M. (1984) Conformational Effects on DNA Polymers Due to Physiological Concentrations of Divalent Metal Ions, Inorg. Chim. (1984) 91, L39–41.

    Article  Google Scholar 

  6. Behling, R. W. and Kearns, D. R. (1986) 1H Two-Dimetisional Nuclear Overhauser Effect and Relaxation Studies of Poly(dA)-Poly(dT), Biochemistry 25, 3335–3346.

    Article  CAS  Google Scholar 

  7. Froystein, N., and Sletten, E. (1991) The Binding of Mn(II) and Zn(II) to the Synthetic Oligonucleotide [d(CGCGAATTCGCG)]2. Acta Chem. Scand. 45, 219–225.

    Article  CAS  Google Scholar 

  8. Froystein, N., Davis, J. T., Reid, B. R. and Sletten, E. (1993) Sequence-Selective Metal Ion Binding to DNA Oligonucleotides, Acta Chem. Scand. 47, 649–657.

    Article  CAS  Google Scholar 

  9. Froystein, N., and Sletten, E. (1994) Interaction of Mercury(II) with the DNA Dodecamer CGCGAATTCGCG. A lH and 15N NMR Study, J. Am Chem. Soc. (1994) 116, 3240–3250.

    Article  Google Scholar 

  10. Steinkopf, S. and Sletten, E. (1994) Sequence-Selective Metal Ion Binding to DNA Hexamers. Acta Chem. Scand. 48, 388–392.

    Article  CAS  Google Scholar 

  11. Steinkopf, S., Garoufis, A., Nerdal, W. and Sletten, E. (1995) Sequence-Selective Metal Ion binding to DNA Oligomers, Acta Chem. Scand., 49, 495–502.

    Article  CAS  Google Scholar 

  12. Steinkopf, S., Nerdal, W., Kolstad, A. and Sletten, E. (1996) Sequence-Selective Interaction Between Mercury(II) Ions and the Dodecamer [d(GCCGATATCGGC)]2. Acta Chem. Scand. (in pres

    Google Scholar 

  13. Rance, M., Sorensen, O. W., Bodeiihausen, G., Wagner, G., Ernst, R. R. and Wüthrich, K. (1983) Improved Spectral Resolution in COSY 1H NMR Spectra of Proteins via Double Quantum Filtering, Biochem. Biophys. Res. Commun., 117, 479–485.

    Article  CAS  Google Scholar 

  14. Jeener, J., Meier, B. H., Bachman, P., and Ernst, R. R. (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chan. Phys., 71, 4546–4553.

    Article  CAS  Google Scholar 

  15. Neuhaus, D. and Williamson, M. (1989) The Nuclear Overhauser Effect in Structural and Confonnatioual Analysis, VCH. New York.

    Google Scholar 

  16. Kowalewski, J., Nordenskiold, L., Benetis, N. and Westlund, P. O. (1985) Prog. NMR Spectrosc. 17, 141–185.

    Article  CAS  Google Scholar 

  17. Navon, G. and Valensin, G. (1987) Nuclear Relaxation Times as a Source of Structural Information, in H. Sigel (ed.) Metal Ions in Biological Systems, Marcel Dekker. New York. pp. 1–45.

    Google Scholar 

  18. Buncel, E., Boone, C. and Joly, H. (1986) Metal Ion-Biomolecule Interactions. Part 13. NMR Evidence for the Fonnation of the Mixed Ligand Thymidine-Mercury-Guanosine Complex. A Model for a Putative Hg(II) Interstrand Crosslinking Structure of DNA, Inorg. Chim. Acta, 125, 167–172.

    Article  CAS  Google Scholar 

  19. Young, P. R., Nandi, U. S. and Kallenbach, N. R. (1982) Binding of Mercury(II) to Poly(dA-dT) Studied by Proton Nuclear Magnetic Resonance, Biochemistry, 21, 62–66.

    Article  CAS  Google Scholar 

  20. Sigel, H., Massoud, S. S. and Corfu, N. A. (1994) Comparison of the Extent of Macrochelate Formation in Complexes of Divalent Metal Ions with Guanosine (GMP2−), Inosine (IMP2−), and Adenosine 5′-Monophosphate (AMP2−)-The Crucial Role of N7 Basicity in Metal Ion — Nucleic Base Recognition, J. Am. Chem. Soc, 116, 2958–2971.

    Article  CAS  Google Scholar 

  21. Jia, Z., Zon, G. and Marzilli, L. G. (1991) Multinuclear NMR Investigation of Zn2+ Binding to a Dodecamer Oligodeoxyribonucleotide: Insights from 13C NMR Spectroscopy. Inorg. Chem. 30, 228–239.

    Article  CAS  Google Scholar 

  22. Katz, S. (1963) The Reversible Reaction of Hg(II) and Double-Stranded Polynucleotides, Biochim. Biophys. Acta, 68, 240–253.

    Article  CAS  Google Scholar 

  23. Yamane, T. and Davidson, N. (1961) On the Complexing of Deoxyribonucleic Acid (DNA) by Mercuric Ion, J. Am. Chem. Soc. 83, 2599–2607.

    Article  CAS  Google Scholar 

  24. Gruenwedel, D. W. and Cruikshank, M. K. (1990) Mercury-Induced DNA Polymorphism: Probing the Conformation of Hg(II)-DNA via Staphylococcal Nuclease Digestion and Circular Dichroism Measurements, Biochemistry 29, 2110–2116.

    Article  CAS  Google Scholar 

  25. Williams, M. N. and Crothers, D. M. (1975) Binding Kinetics of Mercury(II) to Polyribonucleotides, Biochemistry 14, 1944–1951.

    Article  CAS  Google Scholar 

  26. Lavery, R., Pullman, B. and Zakrzewska, K. (1982) Intrinsic Electrostatic Properties and Base Sequence Effects in the Structure of Oligonucleotides, Biophys. Chem. 15, 343–351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sletten, E. (1997). The Binding of Transition Metal Ions to DNA Oligonucleotides Studied by Nuclear Magnetic Resonance Spectroscopy. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics