Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

Abstract

The design of proteins for sequence specific cleavage of DNA can potentially serve a number of uses such as the creation of artificial restriction endonucleases. Such artificial endonucleases would be extremely useful in genomic mapping and also to chemically excise aberrant DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleton, D.W., and Sarkar, B. (1971) The absence of specific copper(II)-binding in dog albumin: A comparative study of human and dog albumins. J. Biol. Chem. 246, 5040–5046.

    CAS  Google Scholar 

  2. Dixon, J.W., and Sarkar, B. (1974) Isolation, amino acid sequence and copper(II)-binding properties of peptide (1-24) of dog serum albumin. J. Biol. Chem. 249, 5872–5877.

    CAS  Google Scholar 

  3. Iyer, K.S.N., Lau, S., Laurie, S.H., and Sarkar, B. (1978) Synthesis of the native copper(II)-transport site of human serum albumin and its copper(II)-binding properties. Biochem. J. 169, 61–69.

    CAS  Google Scholar 

  4. Glennon, J.D., and Sarkar, B. (1982) Nickel(II)-transport in human blood serum: Studies of nickel(II)-binding to human albumin, native sequence peptide and ternary complex formation with L-histidine. Biochem. 7, 203, 15–23.

    Google Scholar 

  5. Glennon, J.D., and Sarkar, B. (1982) The non-specificity of dog serum albumin and the N-terminal model peptide glycylglycyl-L-tyrosine N-methylamide for nickel is due to the lack of histidine in the third position. Biochem. J. 203, 25–31.

    CAS  Google Scholar 

  6. Laussac, J-P., and Sarkar, B. (1984) Characterization of the copper(II)-and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy. Biochemistry 23, 2832–2838.

    Article  CAS  Google Scholar 

  7. Predki, P., Harford, C., Brar, P., and B. Sarkar (1992) Further characterization of the N-terminal copper(II)-and nickel (II)-binding motif of proteins. Biochem. J. 287, 211–215.

    CAS  Google Scholar 

  8. Harford, C., and Sarkar, B. (1995) Neuromedin C binds Cu(II) and Ni(II) via the Atcun Motif: Implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun. 29, 877–882.

    Article  Google Scholar 

  9. Sarkar, B. (1983) Albumin as the major plasma protein transporting metals. Life Chem. Reports 1, 165–209.

    CAS  Google Scholar 

  10. Peters, T, Jr., and Blumenstock, F.A. (1967) Copper-binding properties of bovine serum albumin and its amino terminal peptide fragment. J. Biol. Chem. 242, 1574–1578.

    CAS  Google Scholar 

  11. Sarkar, B., and Wigfield, Y. (1968) Evidence for albumin-Cu(II)-amino acid ternary complex. Can. J. Biochem. 46, 601–607.

    Article  CAS  Google Scholar 

  12. Lau, S. and Sarkar, B. (1971) Ternary coordination complex between human serum albumin, copper(II) and L-histidine. J. Biol. Chem. 246, 5938–5943.

    CAS  Google Scholar 

  13. Laussac, J-P. and Sarkar, B. (1980) 13Carbon-NMR investigation of the Cu(II)-binding to the native sequence peptide representing the Cu(H)-transport site of human albumin. Evidence for the involvement of the β-carboxyl side chain of aspartyl residue. J. Biol. Chem. 255, 7563–7568.

    CAS  Google Scholar 

  14. Laussac, J-P. and Sarkar, B. (1980) Nickel(II)-binding to the NH2-terminal peptide segment of human serum albumin: 13C and1H-NMR investigation. Can. J. Chem. 58, 2055–2060.

    Article  CAS  Google Scholar 

  15. Sarkar, B., and Kruck, T.P.A. (1966) Copper-Amino Acid Complexes in Human Serum, in Biochemistry of Copper,J. Peisach, P. Aisen and W. Blumberg, Eds., Academic Press, New York, pp. 183–196.

    Google Scholar 

  16. Rakhit, G., Antholine, W.E., Froncisz, W., Hyde, J., Pilbrow, J.R., Sinclair, G.R. and Sarkar, B. (1985) Direct evidence of nitrogen coupling in the copper(II) complex of bovine serum albumin by S-band electron spin resonance technique. J. Inorg. Biochem. 25, 217–224.

    Article  CAS  Google Scholar 

  17. He, X.M., and Carter, D.C. (1992) Atomic structure and chemistry of human serum albumin. Nature 358, 209–215.

    Article  CAS  Google Scholar 

  18. Sarkar, B., Renugopalakrishnan, V., Kruck, T.P.A., and Lau, S.(1976) Molecular Design: Theoretical and Solution Studies on Copper(II) Complex of Glycylglycyl-L-Histidine-N Methyl Amide, a Peptide Designed to Mimic the Copper(II)-Transport Site of Human Albumin, in Environment Effects on Molecular Structure and Properties, B. Pullman, Ed., D. Reidel Publishers, Dordrecht-Holland, pp. 165–178.

    Chapter  Google Scholar 

  19. B. Sarkar, (1977) Concepts of Molecular Design in Relation to the Metal-Binding Sites of Proteins and Enzymes, in Metal Ligand Interaction in Organic Chemistry and Biochemistry,B. Pullman and N. Goldblum, Eds., D. Reidel Publishers, Dordrect-Holland, pp. 193–228.

    Chapter  Google Scholar 

  20. Camerman, N., Camerman, A., and Sarkar, B. (1976) Molecular Design to Mimic the Copper(II)-Transport Site of Human Albumin: The Crystal and Molecular Structure of Copper(II)-Glycylglycyl-L-Histidine-N-Methyl Amide Mono Aquo Complex. Can. J. Chem. 54, 1309–1316.

    Article  CAS  Google Scholar 

  21. Harford, C., Narindrasorasak, S. and Sarkar, B. (1996) The designed Protein M(II)-Gly-Lys-His-Fos(138-211) specifically cleaves AP-1 binding site containing DNA. Biochemistry 35, 4271–4278.

    Article  CAS  Google Scholar 

  22. Kimoto, E., Tanaka, H., Gyotoku, J., Morishige, F. and Pauling, L. (1983) Enhancement of antitumor activity of ascorbate against Ehrlich ascitis tumor cells by the copper: Glycylglycyl histine complex. Cancer Res. 43, 824–828.

    CAS  Google Scholar 

  23. Inoue, S. and Kawanishi, S, (1989) ESR evidence for Superoxide, hydroxyl radicals and singlet oxygen produced from hydrogen peroxide and nickel (II) complex of glycylglycyl-L-histidine. Biochem. Biophys. Res. Commun. 159, 445–451.

    Article  CAS  Google Scholar 

  24. Mack, D.P., Iverson, B.L. and Dervan, P.B. (1988) Design and chemical synthesis of a sequence specific DNA-cleaving protein. J. Am. Chem. Soc. 110, 7572–7574.

    Article  CAS  Google Scholar 

  25. Mack, D.P. and Dervan, P.B. (1990) Nickel mediated sequence specific oxidative cleavage of DNA by designed metalloprotein. J. Am. Chem. Soc. 112, 4604–4606.

    Article  CAS  Google Scholar 

  26. Shullenberger, D.F., Eason, P.D. and Long, E.C. (1993) Design and synthesis of a versatile DNA-cleaving metallopeptide structural domain. J. Am. Chem. Soc. 115, 11038–11039.

    Article  CAS  Google Scholar 

  27. Nagaoka, M., Hagihara, M., Kuwahara, J. and Sugiura, Y. (1994) A novel zinc finger based DNA cutter: Biosynthetic design and highly selective DNA cleavage. J. Am. Chem. Soc. 116, 4085–4086.

    Article  CAS  Google Scholar 

  28. Harford, C. and Sarkar, B. (1995) Neuromedin C binds Cu(II) and Ni(II) via the Atcun Motif: Implications for the CNS and cancer growth. Biochem. Biophys. Res. Commun. 29, 877–882.

    Article  Google Scholar 

  29. Curran, T. (1992) Fos and Jun: Oncogenic transcription factors. Tohuku J. Exp. Med. 168, 169–174.

    Article  CAS  Google Scholar 

  30. Glover, J.N.M. and Harrison, S.C. (1995) Crystal structure of the heterodimer b-zip transcription factor c-Fos and c-Jun bound to DNA. Nature (London) 373, 257–261.

    Article  CAS  Google Scholar 

  31. Kerppola, T. and Curran, T. (1991) DNA bending by Fos and Jun: The flexible hinge model. Science 254, 1210–1214.

    Article  CAS  Google Scholar 

  32. Kerppola, T. and Curran, T. (1991) Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations — implication for transcription factors cooperativity. Cell 66, 317–326.

    Article  CAS  Google Scholar 

  33. Patel, L.R., Curran, T. and Kerppola, T.K. (1994) Energy transfer analysis of Fos-Jun dimerization and DNA binding. Proc. Nalt. Acad. Sci. USA 91, 1219–1123.

    Article  Google Scholar 

  34. Predki, P.F., and Sarkar, B. (1992) Effect of Replacement of ‘Zinc Finger’ Zinc on Estrogen Receptor DNA Interactions. J. Biol Chem., 267, 5842–5846.

    CAS  Google Scholar 

  35. Nagaoka, M., Kuwahara, J., and Sugiura, Y. (1993) Alteration of DNA-binding specificity by nickel(II) substitution in three zinc (II) fingers of transcription factor SP1. Biochem. Biophys. Res. Commun. 194, 1515–152C

    Article  CAS  Google Scholar 

  36. Conte, D., Narindrasorasak, S. and Sarkar, B. (1996) In Vivo and In Vitro iron replaced zinc finger generates free radicals and causes DNA damage. J. Biol. Chem. 271, 5125–5130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sarkar, B. (1997). Design of Proteins with ATCUN Motif which Specifically Cleave DNA. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics