Skip to main content

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

  • 343 Accesses

Abstract

Lithium salts have been clinically used, for more than forty years, in the treatment of manic-depression or bipolar disease, as well as in other psychiatric and non-psychiatric disorders, such as depression, schizophrenia, hyperthyroidism, conditions caused by the Herpes simplex and AIDS virus and low blood cells counts associated with chemotherapy [1, 2]. In spite of the well recognized therapeutic effectiveness of lithium, the mechanism of action at the molecular and cellular level of the active species – the lithium ion, Li+ – is still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jefferson, J.W., Greist, J.H., and Baudhuin, M. (1985) Lithium: Current Applications in Scieuce, Medicine and Technology, R.O. Bach (ed.), Wiley, New York, pp. 345–352.

    Google Scholar 

  2. Specter, S. Lancz, G., and Bach, R.O. (1990) Lithium ans virus infections, in R.O. Bach and V.S. Gallicchio (eds.). Lithium and Cell Physiology. Springer-Verlag, pp. 150–157.

    Google Scholar 

  3. Belmaker, R.H. (1981) Receptor, adenylate cyclase, depression, and lithium, Bioi. Psychiatry 16, 333 350.

    Google Scholar 

  4. Avissar, S. Schreiber, G., Danon, A., and Belmaker, R.H. (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 31, 440–442.

    Article  Google Scholar 

  5. Hallcher, L.M., and Sherman, W.R. (1980) The effects of lithium ion and other agents on the activity of myoinositol-1-phosphatase from bovine brain. J.Biol.Chem. 255, 10896–10901.

    CAS  Google Scholar 

  6. Avissar, S. Murphy, D.L., Schreibr, G. (1991) Magnesium reversal of lithium inhibition of b-adrenergic and muscarinic receptor coupling to G protein. Biochem.Pharmacol. 41, 171–175.

    Article  CAS  Google Scholar 

  7. Metzler, H.L. (1991) Is there a specific membrane defect in bipolar disorders?. Biol.Psychiatry 30. 1071–1074.

    Article  Google Scholar 

  8. Espanol, M.T. Ramasamy, R., and Mota de Freitas, D. (1989) Measurement of lithium transport across human erythrocyte membranes by 7Li NMR spectroscopy, in D.A. Butterfield (ed.), Prog.Clin.Biol.Res., Alan R. liss, Inc., New York, vol. 292, pp. 33–43.

    Google Scholar 

  9. Mota de Freitas, D., Abraha, A. Rong, Q., Silberberg, J., Whang, W. Borge, G.F., and Elenz, E. (1994) Relationship between lithium ion transport and phospholipid composition in erythrocytes from bipolar patients receiving lithium carbonate. Lithium 5, 29–39.

    Google Scholar 

  10. Rong, Q., Espanol, M.T., Mota de Freitas, D., and Geraldes, C.F.G.C. (1993) 7Li NMR realxation study of Li+ binding in human erythrocytes. Biochemistry 32, 13490–13498.

    Article  CAS  Google Scholar 

  11. Mota de Freitas, D. (1993) Alkali Metal NMR, in J.F. Riordan and B.L. Vallee (eds.), Methods Enzymol. 227, 78–106.

    Google Scholar 

  12. Ramasamy, R., Mota de Freitas, D., Jones, W., Wezeman, F., Labotka, R.J., and Geraldes, C.F.G.C. (1990) Effects of negatively charged shift reagents on red blood cells morphology, Li+ transport and membrane potential, Inorg.Chem. 29, 3979–3985.

    Article  CAS  Google Scholar 

  13. Seshan, V. Germann, M.J., Preisig, P., Malloy, C.R., Sherry, A.D., and Bansal, N. (1995) TmDOTP5− as a 23Na shift reagent for the in vivo rat kidney. Magn.Reson.Med. 34, 25–31.

    Article  CAS  Google Scholar 

  14. Gadian, D.G. (1982) NMR aud its applications to living systems, Clarendon Press, Oxford, pp. 109–122.

    Google Scholar 

  15. Ehrlich, B.E., Russell, J.M. (1984) Lithium transport across squid axon membrane, Brain Res. 311, 141–143

    Article  CAS  Google Scholar 

  16. Biedler, J.L. Helson, L., and Spengler, B.A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture, Cancer Res. 22, 2643–2652.

    Google Scholar 

  17. Richelson, E. (1977) Lithium ion entry through the sodium channel of cultured mouse neuroblastoma cells: a biochemical study, Science 196, 1001–1002.

    Article  CAS  Google Scholar 

  18. Szentistvanyi, I., Janka, Z., Joo, F., Rimanoczy, A. Juhasz, A., and Latzkovitz, L. (1979) Na-dependent Li+transport in primary nerve cell cultures, Neuroscience Lett. 13, 157–161.

    Article  CAS  Google Scholar 

  19. Bachelard, H., and Badar-Goffer, R. (1993) NMR spectroscopy in neurochemistry, J.Neurochem. 61, 412–429.

    Article  CAS  Google Scholar 

  20. Schanne, F.A.X. Moskal, J.R., and Gupta, R.K. (1989) Effect of lead on intracellular free calcium ion concentration in a presynaptic neuronal model − 19F NMR study on NG 108-15 cells, Brain Res. 503, 308–311.

    Article  CAS  Google Scholar 

  21. Egan, W.M. (1987) The use of perfusion systems for nuclear magnetic resonance studies of cells, in R.K. Gupta (ed.), NMR Spectroscopy of Cells and Organisms, CRC Press, Boca Raton, vol.11, pp. 135–161

    Google Scholar 

  22. Kaplan, O., Van Zijl, P.C.M., and Cohen, J.S. (1992) NMR studies of metabolism of cells and perfused organs, in P. Diehl, E. Fluck, H. Gunther, R. Kosfeld, and J. Seelig (eds.), NMR: Basic Principles and Progress, vol. 28, pp. 3–52.

    Google Scholar 

  23. Swergold, B.S. (1992) NMR spectroscopy of cells, Annu.Rev.Physol. 54, 775–798.

    Article  Google Scholar 

  24. Zachariah, C., Nikolakolpoulos, J., Mota de Freitas, D., Stubbs, E.B., Castro, M.M.C.A., Geraldes, C.F.G.C., Lima, M.C.P., Oliveira, C.R., and Ramasamy, R. (1996) 7Li NMR study of lithium ion transport in perfused human neuroblastoma cells, in J.N. Birch and V.S. Gallicchio (eds.), Lithium: Biochemical and Clinical Advances, in press.

    Google Scholar 

  25. Zachariah, C., Mota de Freitas, D., Castro, M.M.C.A., Geraldes, C.F.G.C. Lima, M.C.P. Oliveira, C.R. (1995) The use of microcarrier beads in ion transport NMR studies of perfused cells, J.Magn.Reson. B108, 81–85.

    Google Scholar 

  26. Nikolakolpoulos, J., Zachariah, C., Mota de Freitas, D., and Geraldes, C.F.G.C. (1996) Comparison of the use of gel threads and microcarrier beads in Li+ transport studies of human neuroblastoma SH-SY 5Y cells. Inorg.Chim.Acta, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Castro, M.M.C.A., Nikolakopoulos, J., Zachariah, C., de Freitas, D.M., Geraldes, C.F.G.C., Ramasamy, R. (1997). Li+ Transport Properties in Perfused Neuronal Cells by 7Li NMR Spectroscopy. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics