Skip to main content

Diversity of Cluster Structures in Mammalian Metallothionein: Interplay Between Metal Ions and Polypeptide Chain

  • Chapter
Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 26))

Abstract

After introducing the 3D structure of mammalian metallothioneins (MTs), a class of low molecular weight metal-binding proteins, spectroscopic evidence for the metal selectivity of clusters and their structural changes upon binding of different divalent metal ions is presented. An interplay between both the chemistry of metal ions and the steric requirements of the polypeptide chain as the cause of the diversity of the metal-thiolate cluster structures in MT is discussed. Moreover, a metal-assisted ligand (apoMT) preorganization as a general concept for the formation of MT structure has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margoshes, M. and Vallee, B.L. (1957) A cadmium protein from equine kidney cortex, J. Am. Chem. Soc. 79, 4813.

    Google Scholar 

  2. Kägi, J.H.R. and Vallee, B.L. (1960) Metallothionein: a cadmium-and zinc-containing protein from equine renal cortex, J. Biol. Chem. 235, 3460–3465.

    Google Scholar 

  3. Kägi, J.H.R. and Schäffer A. (1989) Biochemistry of metallothionein, Biochemistry 27, 8509–8515.

    Article  Google Scholar 

  4. Templeton, D.M. and Cherian, M.G. (1991) Toxicological significance of metallothionein, Methods Enzymol 205, 11–24.

    Article  CAS  Google Scholar 

  5. Kägi, J.H.R. (1991) Overview of metallothionein, Methods Enzymol. 205, 613–626.

    Article  Google Scholar 

  6. Hamer, D.H. (1986). Metallothionein, Ann. Rev. Biochem. 55, 913–951.

    Article  CAS  Google Scholar 

  7. Pountney, D.L., Kägi, J.H.R and Vašák, M. (1995) Metallothioneins, in Handbook on Metal-Ligand Interaction in Biological Fluids, (G. Berthon, ed.), Marcel Dekker Inc., Vol. 1, 431–442.

    Google Scholar 

  8. Vašák, M. and Kägi, J.H.R. (1994) Metallothioneins, in Encyclopedia of Inorganic Chemistry (King, R.B., ed.), John Wiley & Sons Ltd., Vol. 4, 2229–2241.

    Google Scholar 

  9. Vašák, M. and Kägi, J.H.R. (1983) Spectroscopic properties of metallothioneins, Met. Ions Biol. Syst. 15, 213–273.

    Google Scholar 

  10. Uchida, Y., Takio, K., Titani, K., Ihara, Y. and M. Tomonaga (1991) The growth inhibitory factor that is deficient in Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein, Neuron 7, 337–347.

    Article  CAS  Google Scholar 

  11. Quaife, C.J., Findley, S.D., Erickson J.C., Froelick, G.J., Kelly, E.J., Zambrowicz, B.P. and Palmiter R.D. (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia, Biochemistry 33, 7250–7259.

    Article  CAS  Google Scholar 

  12. Fowler, B.A., Hildebrand, C.E., Kojima, Y. and Webb, M. (1987) Nomenclature of metallothionein, Experientia Suppl. 52, 19–22.

    CAS  Google Scholar 

  13. Arseniev, A., Schultze, P., Wörgötter, E., Braun, W., Wagner, G., Vašák, M., Kägi J.H.R. and Wüthrich K. (1988) The three-dimensional structure of rabbit liver Cd7-metallothionein-2a in aqueous solution determined by nuclear magnetic resonance, J. Mol. Biol. 201, 637–657.

    Article  CAS  Google Scholar 

  14. Schultze, P. Wörgötter, E., Braun, W., Wagner, G., Vašák, M., Kägi, J. H. R. and Wüthrich, K. (1988) The conformation of Cd7-metallothionein-2 from rat liver in aqueous solution determined by nuclear mgnetic resonance, J. Mol. Biol. 203, 251–268.

    Article  CAS  Google Scholar 

  15. Messerle, B.A., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich K. (1990) Three-dimensional structure of human 113Cd7-metallothionein-2 in solution by nuclear magnetic resonance spectroscopy, J. Mol. Biol. 214, 765–779.

    Article  CAS  Google Scholar 

  16. Robbins, A.H., McRee, D.E., Williamson, M., Collett, S.A., Xuong, N.H., Furey, W.F., Wang, B.C. and Stout, C.D. (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 Å resolution, J. Mol. Biol. 221, 1269–1293.

    CAS  Google Scholar 

  17. Braun, W., Vašák, M., M., Robbins, A.H., Stout, C.D., Wagner, G., Kägi, J.H.R. and Wüthrich, K. (1992) Comparison of the NMR solution structure and the X-ray crystal structure of rat Metallothionein-2, Proc. Natl. Acad. Sci. USA 89, 10124–10128.

    Article  CAS  Google Scholar 

  18. Messerle, B.A., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich K. (1992) Comparison of the solution conformation of human Zn7-metallothionein-2 and Cd7-metallothionein-2 using nuclear magnetic resonance spectroscopy, J. Mol. Biol 225, 433–443.

    Article  CAS  Google Scholar 

  19. Bertini, I., Luchinat, C., Messori, L. and Vašák, M. (1989) The 1H NMR-spectra of the Co4S11 cluster in metallothioneins: A theoretical model, J. Am. Chem. Soc. 111, 7300–7303.

    Article  CAS  Google Scholar 

  20. Bertini, I., Luchinat, C., Messori, L. and Vašák, M. (1993) Two-dimensional NMR studies of Co(II)7 rabbit liver metallothionein, Eur. J. Biochem. 211, 235–240.

    Article  CAS  Google Scholar 

  21. Ding, X.-Q., Bill, E., Good, M., Trautwein, A.X. and Vašák, M. (1988) Möss-bauer studies on the metal-thiolate cluster formation in Fe(II)-metallothionein, Eur. J. Biochem. 171, 711–714.

    Article  CAS  Google Scholar 

  22. Nettesheim, D. G., Engeseth, H. R. & Otvos, J. D. (1985) Products of metal exchange reactions of metallothionein, Biochemistry, 24 6744–6751.

    Article  CAS  Google Scholar 

  23. Vašák, M., Galdes, A., Kägi, J.H.R., Bremner, L, Young, B. W. and Hill, H.A.O. (1980) Investigation of the structure of metallothionein by proton nuclear magnetic resonance spectroscopy, Biochemistry, 19, 416–425.

    Article  Google Scholar 

  24. Martell, A.E., Hancock, R.D. & Motekaitis, R.J. (1994) Factors effecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution, Coord. Chem. Reviews, 133, 39–65.

    Article  CAS  Google Scholar 

  25. Fausto da Silva, J.J.R. and Williams, R.J.P. (1991) The Biological Chemistry of the Elements, Oxford University Press, Oxford.

    Google Scholar 

  26. Marmorstein, R., Carey, M., Ptashne, M. and Harrison, S.C. (1992) DNA recognition by GAL4: structure of a protein-DNA complex, Nature, 408–414.

    Google Scholar 

  27. Schwabe, J.W. and Klug, A. (1994) Zinc mining for protein domains, Nature Struct. Biol. 1, 345–349.

    Article  CAS  Google Scholar 

  28. Messerle, B.A., Bos, M., Schäffer, A., Vašák, M., Kägi, J.H.R. and Wüthrich, K. (1990) Amide proton exchange in human metallothionein-2 measured by nuclear magnetic resonance spectroscopy, J. Mol. Biol. 781–786.

    Google Scholar 

  29. Hagen, K.S., Stephan, W.D. and Holm R.H. (1982) Metal Ion Exchange Reactions in Cage Molecules: The systems [M4-nM’n(SC6H5)10]2 (M. M’ = Fe(II), Co(II), Zn(II), Cd(II)) with adamantane-like stereochemistry and the structure of [Fe4(SC6H5)10]2−, Inorg. Chem., 21, 3928–3936; and refs. therein.

    Article  CAS  Google Scholar 

  30. Hagen, K.S. and Holm R.H. (1984) Synthesis and stereochemistry of metal(II) thiolates of the types [M(SR)4]2&#2212, [M2(SR)6]2−, and [M4(SR)10]2− (M = Fe(II), Co(II)) Inorg. Chem. 23, 418–427.

    Article  CAS  Google Scholar 

  31. Otvos, J.D. and Armitage, I.M. (1980) Structure of the metal clusters in rabbit liver metallothionein, Proc. Natl. Acad. Sci. USA 77, 7094–7098.

    Article  CAS  Google Scholar 

  32. Good, M., Hollenstein, R. and Vašák, M. (1991) Metal selectivity of clusters in rabbit liver metallothionein, Eur. J. Biochem. 197, 655–659.

    Article  CAS  Google Scholar 

  33. Pountney, D.L. and Vašák, M. (1992) Spectroscopic studies on metal distribution in Co(II)/ Zn(II) mixed-metal clusters in rabbit liver metallothionein-2, Eur. J. Biochem. 209, 335–341.

    Article  CAS  Google Scholar 

  34. Hancock, R. D. (1993) The neutral oxygen donor and macrocyclic chemistry, Pure & Appl. Chem. 65, 941–946.

    Article  CAS  Google Scholar 

  35. Ding, X.-Q., Buzlaff, Ch., Bill, E., Pountney, D.L., Henkel, G., Winkler, H., Vašák, M. and Trautwein, A.X. (1994) Mössbauer and magnetic susceptibility studies on Iron(II) metallothionein from rabbit liver: Evidence for the existence of an unusual type of [M3(Cys)9]−3 cluster, Eur. J. Biochem. 220, 827–837.

    Article  CAS  Google Scholar 

  36. Whitener, M.A., Bashkin, J.A. Hagen, K.S. Girerd, J.-J., Gamp, E. Edelstein, N. and Holm, R. H. (1986) A new inorganic ring system: Planar Fe32-SR)3 in [Fe3(SR)3X6]3− synthesis, structures, and solution conformation and equilibrium, J. Am. Chem. Soc. 108, 5607–5620.

    Article  CAS  Google Scholar 

  37. Zerbe, O., Pountney, D.L., von Philipsborn, W. and Vašák, M. (1994) Vicinal ll3Cd, 1Hβ-cysteine coupling in Cd-substituted metalloproteins follows a Karplus-type dependence, J. Am. Chem. Soc. 116, 377–378.

    Article  CAS  Google Scholar 

  38. Pountney, D.L., Zerbe, O., von Philipsborn, W., Egan, J.B. and Vašák, M. (1996) 3J(113Cd, 1H) couplings in Cd(S-Cys) and Cd-μ-(S-Cd)-Cd moieties follow a Karplus-like dependence with the Hβ-Cβ-Sγ-Cd torsion angle: Application to protein structure. Bull. Magn. Resonance 17, 145–147.

    Google Scholar 

  39. Kobuke, Y., Kobubo and Munakata, M. (1995) Cooperative metal ion binding by metal-organized crown ether, J. Am. Chem. Soc. 117, 12751–12758.

    Article  CAS  Google Scholar 

  40. Good, M., Hollenstein, R., Sadler, P.J. and Vašák, M. (1988) 1I3Cd NMR studies on metal-thiolate cluster formation in rabbit Cd(II)-metallothionein: Evidence for a pH dependence, Biochemistry 27, 7163–7166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vašák, M., Bogumil, R. (1997). Diversity of Cluster Structures in Mammalian Metallothionein: Interplay Between Metal Ions and Polypeptide Chain. In: Hadjiliadis, N.D. (eds) Cytotoxic, Mutagenic and Carcinogenic Potential of Heavy Metals Related to Human Environment. NATO ASI Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5780-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5780-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6440-8

  • Online ISBN: 978-94-011-5780-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics