Skip to main content

Clinical Implications of Changes in Lens and Ocular Imaging Properties

  • Chapter
Basic and Clinical Applications of Vision Science

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 60))

  • 237 Accesses

Abstract

Our measurements of in vitro changes in the focal properties of the human crystalline lens as a function of accommodative state and age demonstrate that presbyopia is a lens based phenomenon and that there may be a lens mediated drift towards a more hyperopic refractive state with ageing. The blur of the image formed by the lens changes as a function of age and accommodative state. Ocular image quality varies with accommodative state and pupil size. Although changes in ocular image quality with accommodative state are analogous to lens changes, there are qualitative differences between lens and ocular image quality. Asymmetric ocular image quality, mediated in part by tilt and decentration of the optical elements, combines with symmetrical blur to influence all methods of retinal imaging. Confocal scanning laser ophthalmoscopy (CSLO) is degraded least by retinal blur followed by scanning laser ophthalmoscopy (SLO) and lastly by conventional fundus imaging. Optimisation of ocular image quality through the choice of pupil centration, has produced the first real-time videoimages of the human cones. These results also have clinical implications to the development of refractive error and to the design of refractive corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook CA, Koretz JF, Pfahnl A, Hyun J, Kaufman PL. Aging of the human crystalline lens and anterior segment.Vision Res 1994;34:2945–2954.

    Article  PubMed  CAS  Google Scholar 

  2. Brown N. The change in lens curvature with age. Exp Eye Res 1974;19:175–183.

    Article  PubMed  CAS  Google Scholar 

  3. Smith G, Atchison DA, Pierscionek BK. Modeling the power of the aging human eye. J Opt Soc Am 1992;9:2111–2117.

    Article  CAS  Google Scholar 

  4. Glasser A, Campbell MCW. Changes in focal length and spherical aberration of the human lens with ageing. In: Vision Science and its Applications: Technical Digest. Washington,D.C.: Optical Society of america, 1996;1:246–249.

    Google Scholar 

  5. Kroeger RHH, Campbell MCW, Munger R, Fernald R. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish, Haplochromis burtoni. Vision Res 1994;34:1815–1823.

    Article  Google Scholar 

  6. Duane A. Normal values of the accommodation at all ages. J Am A 1912;59:1010–1013.

    Google Scholar 

  7. Glasser A, Campbell MCW. Physical and optical changes in the human crystalline lens with age and their relationship to presbyopia. Invest Ophthalmol Vis Sci 1996;37:S757.

    Google Scholar 

  8. Slataper FJ. Age norms of refraction and vision. Arch Ophthalmol (NY) 1950;43:468–481.

    Google Scholar 

  9. Howcroft MJ, Parker JA. Aspheric curvatures for the human lens. Vision Res 1977;17:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  10. Brown N. The change in lens curvature with age. Exp Eye Res 1974;19:175–183.

    Article  PubMed  CAS  Google Scholar 

  11. Jenkins TCA. Aberrations of the eye and their effects on vision. Brit J Physiol Optics 1963;20: 59–91, 161-201.

    PubMed  CAS  Google Scholar 

  12. Westheimer G, Liang J. Influence of ocular light scatter on the eye’s optical performance. J Opt Soc Am A 1995;12:1417–1424.

    Article  CAS  Google Scholar 

  13. Lu C, Munger R, Campbell MCW. Monochromatic aberrations in accommodated eyes. In: Vision Science and its Applications: Technical Digest. Washington, D.C.: Optical Society of america, 1993;3:160–163.

    Google Scholar 

  14. Atchison DA, Collins MS, Wildsoet CF, Christensen J, Waterworth MD. Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vision Res 1995;35:313–323.

    Article  PubMed  CAS  Google Scholar 

  15. Campbell MCW, Harrison EM, Simonet P. Psychophysical measurement of the blur on the retina due to optical aberrations of the eye. Vision Res 1990;30:1587–1602.

    Article  PubMed  CAS  Google Scholar 

  16. Howland HC, Howland B. A subjective method for the measurement of the monochromatic aberrations of the eye. JOpt Soc Am 1977;67:1508–1518.

    Article  CAS  Google Scholar 

  17. Walsh G, Charman WN, Howland, HC. Objective technique for the determination of monochromatic aberrations of the human eye. JOpt Soc Am A 1984;1:987–992.

    Article  CAS  Google Scholar 

  18. Campbell FW, Gubisch RW. Optical quality of the human eye. J Physiol (Lond) 1966;186:558–578.

    PubMed  CAS  Google Scholar 

  19. Santamaria J, Artal P, Bescos J. Determination of the point spread function of human eyes using a hybrid optical-digital method. JOpt Soc Am A 1987;4:1109–1114.

    Article  CAS  Google Scholar 

  20. Roorda A, Campbell MCW. The relationship between double and single pass image quality of the eye. Invest Ophthalmol Vis Sci 1994;35:S1258.

    Google Scholar 

  21. Artal P, Marcos S, Navarro R, Williams DR. Odd aberrations and double pass measurements of retinal image quality. J Opt Soc Am A 1995;12:195–201.

    Article  CAS  Google Scholar 

  22. Liang J, Williams DR. Effect of higher order aberrations on image quality in the human eye. In: Vision Science and its Applications: Technical Digest. Washington, D.C.: Optical Society of america, 1995;1:70–73.

    Google Scholar 

  23. Roorda A. Double pass reflections in the human eye [dissertation]. Waterloo: University of Waterloo, 1996.

    Google Scholar 

  24. Schwiegerling J, Greivenkamp JE, Miller JM. Representation of videokeratoscopic height data with Zernike polynomials. J Opt Soc Am A 1995;12:2105–2113.

    Article  CAS  Google Scholar 

  25. Howland HC, Buettner J, Applegate RA. Computation of the shapes of normal corneas and their monochromatic aberrations from videokeratometric measurements. In: Vision Science and its Applications: Technical Digest. Washington, D.C.: Optical Society of america, 1994;2:54–57.

    Google Scholar 

  26. Wilson MA, Campbell MCW, Simonet P. Changes of pupil centration with change of pupil size. Optom and Vis Sci 1992;69:129–136.

    Article  CAS  Google Scholar 

  27. Walsh G, Charman WN. The effect of pupil centration and diameter on ocular performance. Vision Res 1988;28:659–755.

    Article  PubMed  CAS  Google Scholar 

  28. Tscherning A Physiologic Optics, (trans. Weiland G.). 4th ed. Philadelphia: Keystone Publishing Co.,1924.

    Google Scholar 

  29. Bing L, Campbell MCW. The change of monochromatic aberrations with lens tilt and pupil decentration in a four aspheric surface model eye. Invest Ophthalmol Vis Sci 1994;35:S1803.

    Google Scholar 

  30. Snyder AW, Miller WH. Photoreceptor diameter and spacing for highest resolving power. J Opt Soc Am 1977;67:696–698.

    Article  PubMed  CAS  Google Scholar 

  31. Liang J, Williams DR, Miller, D. Imaging photoreceptors in the living eye with adaptive optics. This volume

    Google Scholar 

  32. Roorda A, Campbell MCW. Comparison of the influence of ocular aberrations on three fundus imaging techniques. OSA Annual Meeting: Technical Digest. Washington D.C.: Optical Society of america, 1996; accepted

    Google Scholar 

  33. Atkinson MR, Roorda A, Campbell MCW. Imaging of individual photoreceptors: Optical possibilities beyond the incoherent resolution limit. Invest Ophthalmol Vis Sci 1995;36:188.

    Google Scholar 

  34. Elliott D, Whitaker D, MacVeigh D. Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vision Res 1990;30:541–547.

    Article  PubMed  CAS  Google Scholar 

  35. Cuiffreda K. Accommodation and its anomalies. In: Cronly-Dillon JR, editor. Vision and visual dysfunction. Vol 1: Visual Optics and Instrumentation. Charman WN, editor. London: The Macmillan Press, 1991:231–279.

    Google Scholar 

  36. Bartmann M, Schaeffel F. A simple mechanism for emmetropization without cues from accommodation or colour. Vision Res 1994;34:873–876.

    Article  PubMed  CAS  Google Scholar 

  37. Wildsoet CF, Howland HC, Falconer S, Dick K. Chromatic aberration and accommodation: Their role in emmetropization in the chick. Vision Res 1993;33:1593–1603.

    Article  PubMed  CAS  Google Scholar 

  38. Collins MJ, Wildsoet CF, Atchison DA. Monochromatic aberrations and myopia. Vision Res 1995;35:1157–1163.

    Article  PubMed  CAS  Google Scholar 

  39. Gwiazda J, Thorn F, Bauer J, Held R. Emmetropization and the progression of manifest refraction in children followed from infancy to puberty. Clin Vis Sci 1993;8:337–344.

    Google Scholar 

  40. Sivak JG, Ryall LA, Weerheim J, Campbell MCW. Optical constancy of the chick lens during pre-and post-hatching ocular development. Invest Ophthalmol Vis Sci 1989;30:967–974.

    PubMed  CAS  Google Scholar 

  41. Kroeger RHH, Fernald RD, Campbell MCW. The refractive index distribution and optical quality of the crystalline lens of the African cichlid fish, Haplochromis burtoni, as a function of lens size and lighting condition during development. Vision Res submitted.

    Google Scholar 

  42. Bennett AG and Rabbetts RB. Clinical visual optics, 2nd ed. Toronto: Butterworths, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Campbell, M.C.W., Glasser, A., Roorda, A. (1997). Clinical Implications of Changes in Lens and Ocular Imaging Properties. In: Lakshminarayanan, V. (eds) Basic and Clinical Applications of Vision Science. Documenta Ophthalmologica Proceedings Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5698-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5698-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6403-3

  • Online ISBN: 978-94-011-5698-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics