Skip to main content

Rings of Continuous Functions as Real Closed Rings

  • Chapter
Ordered Algebraic Structures

Abstract

Real closed rings were first introduced in [48] (cf. [50], [51]) for the express purpose of establishing a new foundation for semi-algebraic geometry. The basic idea is to start with any semi-real ring A (cf. [29], p. 103, Definition 1), i.e., a ring with nonempty real spectrum Sper(A) ([29], Kapitel III, §3; for the real spectrum also see [4], Chapitre 7), and to associate with A its real closure ρ(A). The real closure should be thought of as the ring of continuous semi-algebraic functions on Sper(A). In a setting where the usual notion of continuity of functions is not applicable the real closure supplies in a categorical sense a largest ring of functions on Sper(A) which is useful for studying the topology of Sper(A). (Categorical properties of the real closure are exhibited in [36]. A development of the foundations of the algebraic topology of the real spectrum will be given in [57].) For the purposes of classical topology the largest partially ordered ring of functions on a space X to be used profitably is the ring C(X, ℝ) of continuous functions. Thus, the real closure is a substitute for the ring of continuous functions on any topological space. It is an obvious question whether this is a mere analogy, or whether there is a more formal connection between rings of continuous functions and real closures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Atiyah, I.G. MacDonald: Introduction to Commutative Algebra. Addison-Wesley, Reading, MA (1969).

    MATH  Google Scholar 

  2. R. N. Ball and A. W. Hager: Epicompletion of archimedean ℓ-groups and vector lattices with weak unit J. Austral. Math. Soc. (ser. A) 48 (1990), 25–56.

    Article  MathSciNet  MATH  Google Scholar 

  3. A Bigard, K. Keimel, S. Wolfenstein: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, 608, Springer, Berlin (1977).

    Google Scholar 

  4. J. Bochnak, M. Coste, M.-F. Roy: Géométrie Algébrique Réelle. Springer, Berlin (1987).

    MATH  Google Scholar 

  5. N. Bourbaki: Algèbre Commutative, Chapitres 5 à 7. Masson, Paris (1985).

    Google Scholar 

  6. L. Böcker: Real spectra and distributions of signatures. In: Géométrie Algébrique Réelle et Formes Quadratiques. (Eds.: J.-L. Colliot-Thélène et al.), Lecture Notes in Mathematics 959, Springer, Berlin (1982), pp. 249–272.

    Chapter  Google Scholar 

  7. M. Carrai, M. Coste: Normal spectral spaces and their dimensions. J. Pure Applied Algebra 30, 227–235 (1983).

    Article  Google Scholar 

  8. G. Cherlin, M.A. Dickmann: Real Closed Rings I. Fund. Math. 126, 147–183 (1986).

    MathSciNet  MATH  Google Scholar 

  9. G. Cherlin, M.A. Dickmann: Real Closed Rings II, Model Theory. Annals Pure Applied Logic 25, 213–231 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Coste, M.-F. Roy: La topologie du spectre reel. In: Ordered Fields and Real Algebraic Geometry (Eds.: D.W. Dubois, T. Recio), Contemporary Mathematics, 8, Amer. Math. Soc., Providence (1982), pp. 27–59.

    Chapter  Google Scholar 

  11. M.R. Darnel: Theory of Lattice-Ordered Groups. Marcel Dekker, New York (1995).

    MATH  Google Scholar 

  12. F. Dashiell, A.W. Hager, M. Henriksen: Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. 32, 657–685 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Delfs, M. Knebusch: Semialgebraic topology over a real closed field, II: Basic theory of semialgebraic spaces. Math. Z. 177, 107–129 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Delfs, M. Knebusch: Locally semialgebraic spaces. Springer Lecture Notes in Mathematics 1173, Springer, Berlin (1985).

    Google Scholar 

  15. C.N. Delzell, J.J. Madden: Lattice-ordered rings. In: Real analytic and algebraic geometry. (Eds.: F. Broglia et al.), Walter de Gruyter, Berlin (1995), pp. 103–129.

    Google Scholar 

  16. N.J. Fine, L. Gillman, J. Lambek: Rings of Quotients of Rings of Functions. McGill University Press, Montreal (1965).

    Google Scholar 

  17. J.M. Gamboa: Un exemple d’ensemble constructible à adhérence non constructible. C.R. Acad. Sci. Paris 306 (Ser. I), 617–619 (1988).

    MathSciNet  MATH  Google Scholar 

  18. L. Gillman, M. Jerison: Rings of Continuous Functions. Grad. Texts in Math 43, Springer, Berlin (1976).

    Google Scholar 

  19. A. W. Hager and J. Martinez: Fraction-dense algebras and spaces. Canad. J. Math. 45 (5) (1993), 977–996.

    Google Scholar 

  20. M Henriksen, M. Jerison: The space of minimal prime ideals of a commutative ring. Trans. AMS 115, 110–130 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Henriksen, R. Kopperman: A general theory of structure spaces with applications to spaces of prime ideals. Alg. Univ. 28, 349–376 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Henriksen, S. Larson: Semiprime f-Rings that are subdirect products of valuation domains. In: Ordered Algebraic Structures. Gainesville, (1991) (Eds.: J. Martinez, C. Holland); Kluwer, Dordrecht (1993), pp. 159–168.

    Google Scholar 

  23. H. Henriksen, S. Larson, J. Martinez, R.G. Woods: Lattice-ordered algebras that are subdirect products of valuation domains. Trans. AMS 345, 195–221 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Henriksen, J. Vermeer, R.G. Woods: Quasi F-covers of Tychonoff spaces. Trans. AMS 303, 779–803 (1987).

    MathSciNet  MATH  Google Scholar 

  25. M. Henriksen, R.G. Wilson: When is C(X)/P a valuation ring for every prime ideal P? Topology and its Appl. 44, 175–180 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Henriksen, R.G. Wilson: Almost discrete SV-spaces. Topology and its Appl. 46, 89–97 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Höchster: Prime ideal structure in commutative rings. Trans. AMS 142, 43–60 (1969).

    Article  Google Scholar 

  28. R. Huber, C. Scheiderer: it A relative notion of local completeness in semialgebraic geometry. Arch. Math. 53, 571–584 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Knebusch, C. Scheiderer: Einführung in die reelle Algebra. Vieweg, Braunschweig (1989).

    Book  MATH  Google Scholar 

  30. M. Knebusch, D. Zhang: Manis valuations and relative Prüfer rings I. Preprint.

    Google Scholar 

  31. J. Lambek: Lectures on Rings and Modules. Chelsea, New York (1976).

    MATH  Google Scholar 

  32. S. Larson: Convexity conditions on f-rings. Canad. J. Math. 38, 48–64 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Larson: A characterization of f-rings in which the sum of semiprime ℓ-ideals is semiprime and its consequences. Preprint.

    Google Scholar 

  34. D. Lazard: Epimorphismes plats. Séminaire P. Samuel (Algèbre comm.), (1967/68).

    Google Scholar 

  35. J.J. Madden: Pierce-Birkhoff rings. Arch. Math. 53, 565–570 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  36. J.J. Madden, N. Schwartz: Monoreflectors of Partially Ordered Rings. In preparation.

    Google Scholar 

  37. M. Mandelker: Prime ideal structure of rings of bounded continuous functions. Proc. AMS 19, 1432–1438 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Mandelker: F’-spaces and z-embedded subspaces. Pacific J. Math. 28, 615–621 (1969).

    MathSciNet  MATH  Google Scholar 

  39. J. Martinez, S.D. Woodward: Bezout and Prüfer f-Rings. Comm. in Alg. 20, 2975–2989 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  40. R.G. Montgomery: Structures determined by prime ideals of rings of functions. Trans. AMS 147, 367–380 (1970).

    Article  MATH  Google Scholar 

  41. J.R. Porter, R.G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer, New York (1988).

    Book  MATH  Google Scholar 

  42. M. Prechtel: Endliche semialgebraische Räume. Diplomarbeit, Regensburg (1988).

    Google Scholar 

  43. M. Prechtel: Universelle Vervollständigungen in der Kategorie der reell abgeschlossenen Räume. Dissertation, Regensburg (1992).

    Google Scholar 

  44. S. Prieß-Crampe: Angeordnete Strukturen-Gruppen, Körper, projektive Ebenen. Springer, Berlin (1983).

    MATH  Google Scholar 

  45. B. v. Querenburg: Mengentheoretische Topologie. Springer, Berlin (1979).

    Book  MATH  Google Scholar 

  46. H.-W. Schülting: Über reelle Stellen eines Körpers und ihren Holomorphiering. Dissertation, Dortmund (1979).

    Google Scholar 

  47. H.W. Schülting: On real places of a field and their holomorphy ring. Comm. Alg. 10, 1239–1284 (1984).

    Article  Google Scholar 

  48. N. Schwartz: Real Closed Spaces. Habilitationsschrift, München (1984).

    MATH  Google Scholar 

  49. N. Schwartz: Real Closed Rings. In: Algebra and Order (Ed.: S. Wolfenstein), Heldermann, Berlin (1986), pp. 175–194.

    Google Scholar 

  50. N. Schwartz: The Basic Theory of Real Closed Spaces. Regensburger Math. Schriften, Bd.15, Fakultät für Mathematik der Universität, Regensburg (1987).

    Google Scholar 

  51. N. Schwartz: The Basic Theory of Real Closed Spaces. Memoirs AMS, 397, Amer. Math. Soc., Providence, R.I. (1989).

    Google Scholar 

  52. N. Schwartz: Open Morphisms of Real Closed Spaces. Rocky Mountain J. Math. 19, 913–938 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Schwartz: Epimorphisms of f-Rings. In: Ordered Algebraic Structures. (Ed. J. Martinez), Kluwer, Dordrecht (1989), pp. 187–195.

    Chapter  Google Scholar 

  54. N. Schwartz: Eine universelle Eigenschaft reell abgeschlossener Räume. Comm. in Alg. 18, 755–774 (1990).

    Article  MATH  Google Scholar 

  55. N. Schwartz: Inverse real closed spaces. Illinois J. Math. 35, 536–568 (1991).

    MathSciNet  MATH  Google Scholar 

  56. N. Schwartz: Epimorphic hulls and Prüfer hulls of partially ordered rings. Preprint.

    Google Scholar 

  57. N. Schwartz: Algebraic topology of real closed spaces. In preparation.

    Google Scholar 

  58. H.H. Storrer: Epimorphismen von kommutativen Ringen. Comment Math. Helv. 43, 378–401 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  59. E.M. Vectomov: Rings and sheaves. J. Math. Sci. 74, 749–798 (1995).

    Article  MathSciNet  Google Scholar 

  60. J. Vermeer: The smallest basically disconnected pre-image of a space. Topology and its Appl. 17, 217–232 (1984).

    Article  MathSciNet  Google Scholar 

  61. R.C. Walker: The Stone-Cech Compactification. Springer, New York (1974).

    Book  MATH  Google Scholar 

  62. M. Wieberneit: Das reelle Spektrum reeller Abschlüsse von Ringen auf nichtkonvexen prokonstruierbaren Mengen. Diplomarbeit, Regensburg (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwartz, N. (1997). Rings of Continuous Functions as Real Closed Rings. In: Holland, W.C., Martinez, J. (eds) Ordered Algebraic Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5640-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5640-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6378-4

  • Online ISBN: 978-94-011-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics