Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

The Oregon Transect Ecosystem Research (OTTER) Project, conducted from 1990 to 1992, was an investigation of regional and seasonal variations in forest ecosystem processes involving carbon (C), nitrogen (N) and water. Methods of field ecology, surface meteorology, computer simulation and remote sensing were applied to the study of six primary coniferous forest sites and three fertilization-treatment sites along an environmental gradient across west central Oregon. The objective of the OTTER Project was to address two main questions: (i) can generalized ecosystem models, designed to use mainly variables to be derived from remote sensing data, explain the variation in ecosystem functioning found across the environmentally variable landscape of Oregon? and (ii) do good relationships exist between the regional variation in these driving variables and remotely sensed data? A large team of scientists supported by airborne remote sensing efforts collected a very wide range of ecological, climatological, biophysical and biochemical variables relating to net primary production (NPP), photosynthesis, evapotranspiration and nutrient cycling in these forests. The team used both a light-use efficiency model and a mechanistic ecosystem process model to predict NPP across the transect. The driving variables of each model formed the basis for the remote sensing studies. Correlative analyses and radiative transfer models were used to study the relationships between LAI, specific leaf area, standing biomass, foliar biomass, foliar chemistry, canopy temperature, relative humidity, vapor pressure deficit, incident and fraction of absorbed photosynthetically active radiation (PAR) and spectral reflectance from a wide variety of remotely sensed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., Wessman, C.A., Peterson, D.L., Melillo, J.M. and Fownes, J. 1989a. Remote sensing of litter and soil organic matter decomposition in forest ecosystems. — In: Hobbs, R.J. and Mooney, H.A. (eds). Remote Sensing of Biosphere Functioning. Springer-Verlag, New York, pp. 87–101.

    Google Scholar 

  • Abuelgasim, A.A. and Strahler, A.H. 1994. Modeling bidirectional radiance measurements collected by the Advanced Solid-state Array Spectrometer (ASAS) over Oregon transect conifer forests. — Rem. Sens. Environ. 47(2): 261–275.

    Google Scholar 

  • Baldocchi, D.D., Hicks, B.B. and Meyers, T.P. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. — Ecology 69: 1331–1340.

    Google Scholar 

  • Barton, F.E., II and Windham, W.R. 1988. Determination of acid-detergent fiber and crude protein in forages by near-infrared reflectance spectroscopy: Collaborative study. — J. Assoc. Offic. Anal. Chem. 71: 620–651.

    Google Scholar 

  • Barton, F.E., II and Himmelsbach, D.S. 1991. Near-infrared reflectance spectroscopy and other spectral analyses. — In: Davis, A.M.C. and Creaser, C.S. (eds). Analytical Applications of Spectroscopy II. The Royal Chemistry Society, Thomas Grahm House, Cambridge, UK, pp. 240–247.

    Google Scholar 

  • Birk, E.M. and Matson, P.A. 1986. Site fertility affects seasonal carbon reserves in loblolly pine. — Tree Physiol. 2: 17–27.

    PubMed  CAS  Google Scholar 

  • Card, D.H., Peterson, D.L., Matson, P.A. and Aber, J.D. 1988. Prediction of leaf chemistry by the use of visible and near-infrared reflectance spectroscopy. — Rem. Sens. Environ. 26: 123–147.

    Google Scholar 

  • Chapin, F.S., II. 1980. The mineral nutrition of wild plants. — Ann. Rev. Ecol. System. 11: 233–260.

    CAS  Google Scholar 

  • Chapin, ES., II and Kedrowski, R.A. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. — Ecology 64: 376–391.

    CAS  Google Scholar 

  • Chapin, F.S., II, McKendrick, J.D. and Johnson, D.A. 1986. Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: Implications for herbivory. — J. Ecol. 76: 707–732.

    Google Scholar 

  • Cimino, J.B., Brandini, A., Casey, D., Rabassa, J. and Wall, S. 1986. Multiple incidence angle SIR-B experiment over Argentina: Mapping of forest units. — IEEE Trans. Geosci. Rem. Sens. 24: 498–509.

    Google Scholar 

  • Cole, D.W. and Rapp, M. 1981. Element cycling in forest ecosystems. — In: Reichle, D.E. (ed). Dynamic Properties of Forest Ecosystems. Cambridge University Press, Cambridge, UK, pp. 341–409.

    Google Scholar 

  • Cooper, D.L. and Asrar, G. 1989. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tallgrass prairie. — Rem. Sens. Environ. 27: 93–102.

    Google Scholar 

  • Coughlan, J.C. and Dungan, J.L. 1996. Combining remote sensing and forest ecosystem modeling: An example using the Regional HydroEcological Simulation System (RHESSys). — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 135–158.

    Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. — Tree Physiol. 7: 33–48.

    PubMed  CAS  Google Scholar 

  • DiStefano, J.F. and Gholz, H.L. 1986. A proposed use of ion exchange resins to measure mineralization and nitrification in intact soil cores. — In: Commun. Soil Sci. Plant Anal. 17: 989–998.

    CAS  Google Scholar 

  • Dobson, M.C., Ulaby, F.T., Le Toan, T., Beaudoin, A., Kasischke, E.J. and Christensen, N. 1992. Dependence of radar backscatter on conifer forest biomass. — IEEE Trans. Geosci. Rem. Sens. 30: 412–415.

    Google Scholar 

  • Durden, S.L., Zebker, H.A. and van Zyl, J.J. 1988. Application of radar polarimetry to forestry. — In: Proceedings of the IGARSS’88 Symposium, September 12–16, 1988, Edinburgh, pp. 1003–1004.

    Google Scholar 

  • Durden, S.L., van Zyl, J.J. and Zebker, H.A. 1989. Modeling and observations of the radar polarization signature of forested areas. — IEEE Trans. Geosci. Rem. Sens. GE28: 290–301.

    Google Scholar 

  • Durden, S.L., Klein, J.D. and Zebker, H.A. 1991. Polarimetric radar measurements of a forested area near Mt. Shasta. — IEEE Trans. Geosci. Rem. Sens. 29: 444–450.

    Google Scholar 

  • Eck, T. and Dye, D.G. 1991. Satellite estimation of photosynthetically active radiation at the Earth’s surface. — Rem. Sens. Environ. 38: 135–146.

    Google Scholar 

  • Fox, L., III and Mayer, K.E. 1980. Forest Resource Classification of the McCloud Ranger District, Mt. Shasta, California, Using Landsat Digital Data. — USDA Forest Service, Final Report EM-7145-2, Washington, DC. 77 pp.

    Google Scholar 

  • Franklin, J.F. and Dyrness, C.T 1973. Natural vegetation of Oregon and Washington. — USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, General Technical Report PNW-8, Portland, OR. 417 pp.

    Google Scholar 

  • Gholz, H.L. 1982. Environmental limits on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest. — Ecology 63: 469–481.

    Google Scholar 

  • Gholz, H.L., Grier, C.C., Campbell, A.G. and Brown, A.T. 1979. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. — Oregon State University, Forest Research Lab, Research Paper 41, Corvallis, OR. 39 pp.

    Google Scholar 

  • Gholz, H.L., Curran, P.J., Kupiec, J. A. and Smith, G.M. 1996. Assessing leaf area and canopy biochemistry of Florida pine plantations using remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–22.

    Google Scholar 

  • Glassy, J.M. and Running, S.W. 1994. Validating diurnal climatology logic of the MT-CLIM model across a climatic gradient in Oregon. — Ecol. Appl. 4(2): 248–257.

    Google Scholar 

  • Gong, P., Pu, R. and Miller, J.R. 1992. Correlating leaf area index of Ponderosa pine with hyperspectral CASI data. — Can. J. Rem. Sens. 18(4): 275–282.

    Google Scholar 

  • Goward, S.N. 1989. Satellite bioclimatology. — J. Clim. 7: 710–720.

    Google Scholar 

  • Goward, S.N. and Dye, D.G. 1987. Evaluating North American net primary productivity with satellite observations. — Adv. Space Res. 9: 239–249.

    Google Scholar 

  • Goward, S.N. and Hope, A.S. 1989. Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data. — Adv. Space Res. 9: 239–249.

    Google Scholar 

  • Goward, S.N. and Dye, D.G. 1996. Global biospheric monitoring with remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 241–272.

    Google Scholar 

  • Goward, S.N., Cruikshanks, G.C. and Hope, A.S. 1985. Observed relation between thermal emissions and reflected spectral reflectance from a complex vegetated landscape. — Rem. Sens. Environ. 18: 137–146.

    Google Scholar 

  • Goward, S.N., Kerber, A., Dye, D.G. and Kalb, V. 1987. Comparison of North and South American biomes from AVHRR observations. — Geocarto 2: 21–40.

    Google Scholar 

  • Goward, S.N., Waring, R.H., Dye, D.G. and Wang, J. 1994. Ecological remote sensing at OTTER: Satellite macroscale observations. — Ecol. Appl. 4(2): 322–343.

    Google Scholar 

  • Grier, C.C. and Running, S.W. 1977. Leaf area of mature northwestern coniferous forest: Relation to site water balance. — Ecology 58: 893–899.

    Google Scholar 

  • Hess, L.L., Melack, J.M. and Simonett, D.S. 1990. Radar detection of flooding beneath the forest canopy: A review. — Int. J. Rem. Sens. 11: 1313–1325.

    Google Scholar 

  • Horler, D.N.H., Dockray, M. and Barber, J. 1983. The red edge of plant leaf reflectance. — Int. J. Rem. Sens. 4: 273–288.

    Google Scholar 

  • Jedlovec, G.J. 1990. Precipitable water estimation from high-resolution split window radiance measurements. — J. Appl. Meteorol. 29: 863–877.

    Google Scholar 

  • Johnson, L.E, Hlavka, C.A. and Peterson, D.L. 1994. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. — Rem. Sens. Environ. 47: 216–230.

    Google Scholar 

  • Jupp, D.L.B. and Strahler, A.H. 1991. A hotspot model for leaf canopies. — Rem. Sens. Environ. 38: 193–210.

    Google Scholar 

  • Jupp, D.L.B. and Walker, J. 1996. Detecting structural and growth changes in woodlands and forests: The challenge for remote sensing and the role of geometric-optical modelling. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–108.

    Google Scholar 

  • Kasischke, E.S., Clinthrone, J.C. and Dobson, M.C. 1985. Analysis of a southern pine forest using X-, C-and L-band dual-polarized SAR imagery. — In: Proceedings of the IGARSS’ 85 Symposium. IEEE, New York, p. 174.

    Google Scholar 

  • Kneizys, F., Shettle, E., Anderson, G., Abrew, L., Chetwynd, J., Shelby, J. and Gallery, W. 1989. Atmospheric transmittance/radiance: Computer code LOWTRAN7. — Hanscom Air Force Base, Air Force Geophysics Lab, Publication AFGL-TR-88-0177, Environmental Research Papers 1/1010, Hanscom, MA. 137 pp.

    Google Scholar 

  • Knight, D.H., Fahey, T.J., Running, S.W., Harrison, A.T and Wallace, L.L. 1981. Transpiration from 100-year-old lodgepole pine forests estimated with whole tree photometers. — Ecology 62: 717–726.

    Google Scholar 

  • Landsberg, J.J. 1986. Physiological Ecology of Forest Production. — Academic Press, New York. 198 pp.

    Google Scholar 

  • Landsberg, J.J., Prince, S.D., Jarvis, P.G., McMurtrie, R.E., Luxmoore, R. and Medlyn, B.E. 1996. Energy conversion and use in forests: An analysis of forest production in terms of radiation utilisation efficiency (ɛ). — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 273–298.

    Google Scholar 

  • Law, B.E. and Waring, R.H. 1994. Remote sensing of leaf area index and radiation intercepted by understory vegetation. — Ecol. Appl. 4(2): 272–279.

    Google Scholar 

  • Le Toan, T., Beaudoin, A., Riom, J. and Guyon, D. 1992. Relating forest biomass to SAR data. — IEEE Trans. Geosci. Rem. Sens. 30: 403–411.

    Google Scholar 

  • Lee, L.P. and Takahashi, T. 1966. An improved colorimetric determination of amino acids with the use of ninhydrin. — Anal. Biochem. 14: 71–77.

    CAS  Google Scholar 

  • Li, X. and Strahler, A.H. 1986. Geometric-optical bidirectional reflectance modeling of a coniferous forest canopy. — IEEE Trans. Geosci. Rem. Sens. GE24: 906–919.

    Google Scholar 

  • Li, X. and Strahler, A.H. 1992. Geometric-optical bidirectional reflectance modeling of the discrete-crown vegetation canopy: Effect of crown shape and mutual shadowing. — EEEE Trans. Geosci. Rem. Sens. 30: 276–292.

    Google Scholar 

  • Under, S. 1980. Chlorophyll as an indicator of the nitrogen status of coniferous seedlings. — New Zeal. J. For. Sci. 10: 166–175.

    Google Scholar 

  • Martin, M.E. and Aber, J.D. 1996. Estimating forest canopy characteristics as inputs for models of forest carbon exchange by high spectral resolution remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61–72.

    Google Scholar 

  • Matson, P.A. and Waring, R.H. 1984. Effects of nutrient and light limitation on mountain hemlock: Susceptibility to laminated root rot. — Ecology 65: 1517–1524.

    Google Scholar 

  • Matson, P.A., Johnson, L.F., Billow, T., Miller, J. and Pu, R. 1994. Seasonal patterns and remote spectral estimation of canopy chemistry across the Oregon transect. — Ecol. Appl. 4(2): 280–298.

    Google Scholar 

  • McClain, E.P., Pickel, W.G. and Walton, C.C. 1985. Comparative performance of AVHRR-based multichannel sea surface temperatures. — J. Geophys. Res. 90: 11587–11601.

    Google Scholar 

  • Meentemeyer, V. and Berg, B. 1986. Regional variation in rate of mass-loss of Scots pine needle litter in Swedish pine forests as influenced by climate and litter quality. — Scand. J. For. Res. 1: 167–180.

    Google Scholar 

  • Melillo, J.M., Aber, J.D. and Muratore, J.M. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition. — Ecology 63: 62–626.

    Google Scholar 

  • Meyer, M.M. and Splittstoesser, W.E. 1971. The utilization of carbohydrate and nitrogen reserves by Taxus during its spring growth period. — Physiol. Plant. 24: 306–314.

    CAS  Google Scholar 

  • Miller, J.R., Hare, E.W. and Wu, J. 1990. Quantitative characterization of the vegetation red edge reflectance. 1. An inverted-Gaussian reflectance model. — Int. J. Rem. Sens. 11: 1755–1773.

    Google Scholar 

  • Moghaddam, M., Durden, S. and Zebker, H. 1994. Radar measurement of forested areas during OTTER. — Rem. Sens. Environ. 47(2): 154–166.

    Google Scholar 

  • Montieth, J.L. 1977. Climate and efficiency of crop production in Britain. — Phil. Trans. Roy. Soc. (Series B) 281: 277–294.

    Google Scholar 

  • Myneni, R.B., Hall, F.G., Sellers, P.J. and Marshak, A.L. 1994. The meaning of spectral vegetation indices. — In: Proceedings of the IGARSS’94 Symposium, August 8–12, 1994, California Institute of Technology, Pasadena, CA, 18 pp.

    Google Scholar 

  • Myrold, D.D. 1994. Nitrogen and carbon cycling along the Oregon transect. — NASA, Ames Research Center, Final Report, Grant NAG2-719, Moffett Field, CA. 5 pp.

    Google Scholar 

  • Myrold, D.D., Matson, P.A. and Peterson, D.L. 1989. Relationships between soil microbial properties and aboveground stand characteristics of conifer forests in Oregon. — Biogeochem. 8: 265–281.

    Google Scholar 

  • Nemani, R.R., Pierce, L.L., Running, S.W. and Goward, S.N. 1993. Developing satellite-derived estimates of surface moisture status. — J. Appl. Meteorol. 32: 548–557.

    Google Scholar 

  • Nilson, T and Ross, J. 1996. Modeling radiative transfer through forest canopies: Implications for canopy photosynthesis and remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 23–60.

    Google Scholar 

  • Pate, J.S. 1983. Patterns of nitrogen metabolism in higher plants. — In: Lee, J.A., McNeill, S. and Robinson, LH. (eds). Nitrogen as an Ecological Factor. Blackwell, Oxford, UK, pp. 225–255.

    Google Scholar 

  • Peterson, D.L. and Card, D.H. 1977. Issues arising from the demonstration of Landsat-based technologies and mapping of the forest ecosystems of the Pacific Northwest states. — In: Shahrohki, F. (ed). Remote Sensing of Earth Resources. Vol. 6. University of Tennessee Space Institute, Tullahoma, TN, pp. 65–100.

    Google Scholar 

  • Peterson, D.L. and Running, S.W. 1989. Applications in forest science and management. — In: Asrar, G. (ed). Theory and Applications of Optical Remote Sensing. J. Wiley and Sons, New York, pp. 429–473.

    Google Scholar 

  • Peterson, D.L. and Waring, R.H. 1994. Overview of the Oregon Transect Ecosystem Research Project. — Ecol. Appl. 4(2): 211–215.

    Google Scholar 

  • Peterson, D.L., Spanner, M.A., Running, S.W. and Teuber, K.B. 1987. The relationship of Thematic Mapper Simulator data to leaf area index of temperate coniferous forests. — Rem. Sens. Environ. 22: 323–341.

    Google Scholar 

  • Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N.A., Wessman, C.A. and Spanner, M.A. 1988. Remote sensing of forest canopy and leaf biochemical contents. — Rem. Sens. Environ. 24: 85–108.

    Google Scholar 

  • Pierce, L.L. and Running, S.W. 1988. Rapid estimation of coniferous leaf area index using a portable integrating radiometer. — Ecology 69: 1762–1767.

    Google Scholar 

  • Pierce, L.L., Running, S.W. and Walker, J. 1994. Regional scale relationships of leaf area index to specific leaf area and leaf nitrogen content. — Ecol. Appl. 4(2): 313–321.

    Google Scholar 

  • Price, J.S. 1984. Land surface temperature measurements from the split window channels of the NOAA-7 Advanced Very High Resolution Radiometer. — J. Geophys. Res. 89(D5): 7231–7237.

    Google Scholar 

  • Raich, J.W. and Nadelhoffer, K.J. 1989. Belowground carbon allocation in forest ecosystems: Global trends. — Ecology 70: 1346–1354.

    Google Scholar 

  • Rastetter, E.B., Ryan, M.G., Shaver, G.R., Melillo, J.M., Nadelhoffer, K., Hobbie, J.E. and Aber, J.D. 1991. A general biogeochemical model describing the responses of C and N cycles in terrestrial ecosystems to changes in CO2, climate and N deposition. — Tree Physiol. 9: 101–126.

    PubMed  CAS  Google Scholar 

  • Reichle, D.E. (ed). 1981. Dynamic Properties of Forest Ecosystems. — Cambridge University Press, Cambridge, UK. 683 pp.

    Google Scholar 

  • Rosenberg, N.J., Blad, B.L. and Verma, S.B. 1983. Microclimate: The Biological Environment. 2d ed. — J. Wiley and Sons, New York. 495 pp.

    Google Scholar 

  • Running, S.W. 1994. Testing FOREST-BGC ecosystem process simulations across a climatic gradient. — Ecol. Appl. 4(2): 238–247.

    Google Scholar 

  • Running, S.W. and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes. — Ecol. Model. 42: 125–154.

    CAS  Google Scholar 

  • Running, S.W. and Nemani, R.R. 1988. Relating the seasonal pattern of the AVHRR normalized difference vegetation index to simulated photosynthesis and transpiration of forests in different climates. — Rem. Sens. Environ. 17: 472–483.

    Google Scholar 

  • Running, S.W. and Gower, S.T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. 2. Dynamic carbon allocation and nitrogen budgets. — Tree Physiol. 9: 147–160.

    PubMed  CAS  Google Scholar 

  • Running, S.W., Waring, R.H. and Rydell, R.A. 1975. Physiological control of water flux in conifers: A computer simulation model. — Oecologia 18: 1–16.

    Google Scholar 

  • Running, S.W., Peterson, D.L., Spanner, M.A. and Teuber, K.B. 1987a. Remote sensing of forest leaf area index. — Ecology 67: 273–275.

    Google Scholar 

  • Running, S.W., Nemani, R.R. and Hungerford, R.D. 1987b. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. — Can. J. For. Res. 17: 472–483.

    Google Scholar 

  • Runyon, J., Waring, R.H., Goward, S.N. and Welles, J.M. 1994. Environmental limits on net primary production and light-use efficiency across the Oregon transect. — Ecol. Appl. 4(2): 226–237.

    Google Scholar 

  • Ryan, M.G. 1991. A simple model for estimating gross carbon budgets for vegetation in forest ecosystems. — Tree Physiol. 9: 255–266.

    PubMed  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Bradstreet, E.D. and Hemmingsen, E.A. 1965. Sap pressure in vascular plants. — Science 148: 339–346.

    PubMed  CAS  Google Scholar 

  • Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. — Int. J. Rem. Sens. 6: 1335–1271.

    Google Scholar 

  • Skiles, J.W. and Angelici, G.L. 1993. Data management for support of the Oregon Transect Ecosystem Research (OTTER) Project. — NASA, Ames Research Center, NASA Contractor Report 4557, Moffett Field, CA.

    Google Scholar 

  • Sollins, P., Goldstein, R.A., Mankin, J.B., Murphy, C.E. and Swartzman, G.L. 1981. Analysis of forest growth and water balance using complex ecosystem models. — In: Reichle, D.E. (ed). Dynamic Properties of Forest Ecosystems. Cambridge University Press, Cambridge, UK, pp. 537–566.

    Google Scholar 

  • Spanner, M.A., Acevedo, W, Teuber, K.B., Running, S.W., Peterson, D.L., Card, D.H. and Mouat, D.A. 1984. Remote sensing of leaf area index of temperate coniferous forests. — In: Proceedings of Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN, pp. 362–370.

    Google Scholar 

  • Spanner, M.A., Pierce, L.L., Running, S.W. and Peterson D.L. 1990a. Seasonal trends of AVHRR data of temperate coniferous forests: Relationship with leaf area index. — Rem. Sens. Environ. 33: 97–112.

    Google Scholar 

  • Spanner, M.A., Pierce, L.L., Peterson, D.L. and Running, S.W. 1990b. Remote sensing of coniferous forest leaf area index: The influence of canopy closure, understory vegetation and background reflectance. — Int. J. Rem. Sens. 11: 95–111.

    Google Scholar 

  • Spanner, M.A., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J. and Gong, P. 1994. Remote sensing of seasonal leaf area index across the Oregon transect. — Ecol. Appl. 4(2): 258–271.

    Google Scholar 

  • Strahler, A.H., Franklin, J., Woodcock, C.E. and Logan, T.L. 1981. FOCIS: A forest classification and inventory system using Landsat and digital terrain data. — USDA Forest Service, Nationwide Forestry Applications Program, Report NFAP-255, Salt Lake City, UT. 60 pp.

    Google Scholar 

  • Sun, G.Q. and Simonett, D.S. 1988. Simulation of L-band HH microwave backscattering from coniferous forest stands: A comparison with SIR-B data. — Int. J. Rem. Sens. 9: 907–925.

    Google Scholar 

  • Technicon Instrument Corporation. 1977. Individual/simultaneous determinations of nitrogen and/or phosphorus in BD acid digests. Industrial Method Number 329-74 W. — Technicon Instrument Corporation, Tarrytown, NY. 9 pp.

    Google Scholar 

  • Tromp, J. 1970. Storage and mobilization of nitrogenous compounds in apple trees with special reference to arginine. — In: Luckwell, L.C. and Cutting, C.V. (eds). Physiology of Tree Crops. Academic Press, New York, pp. 143–159.

    Google Scholar 

  • Van Cleve, K., Oliver, L., Schlenter, R., Viereck, L.A. and Dyrness, C.T. 1983. Production and nutrient cycling in taiga forest ecosystems. — Can. J. For. Res. 13: 747–766.

    Google Scholar 

  • Van den Driessche, R. and Webber, J.E. 1977. Variation in total and soluble nitrogen concentrations in response to fertilization of Douglas-fir. — For. Sci. 23: 135–142.

    Google Scholar 

  • Van Soest, P.J. and Wine, R.H. 1968. Determination of lignin and cellulose in acid-detergent fiber with permanganate. — J. Assoc. Offic. Anal. Chem. 51: 780–785.

    Google Scholar 

  • Wallin, D.O., Harmon, M.E., Cohen, W.B., Fiorella, M. and Ferrell, W.K. 1996. Use of remote sensing to model land use effects on carbon flux in forests of the Pacific Northwest, USA. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 219–237.

    Google Scholar 

  • Waring, R.H. 1980. Site, leaf area, and phytomass production in trees. — In: Benecke, U. and Davis, M.R. (eds). Mountain Environments and Subalpine Tree Growth. New Zealand Forest Service, Technical Paper 70, Wellington, New Zealand, pp. 125–135.

    Google Scholar 

  • Waring, R.H. 1983. Estimating forest growth and efficiency in relation to canopy leaf area. — Adv. Ecol. Res. 13: 327–354.

    Google Scholar 

  • Waring, R.H. and Major, J. 1964. Some vegetation of the California coastal redwood in relation to gradients of moisture, nutrients, light, and temperature. — Ecol. Monogr. 34: 167–215.

    Google Scholar 

  • Waring, R.H. and Cleary, B.D. 1967. Plant moisture stress: Evaluation by pressure bomb. — Science 155: 1248–1254.

    PubMed  CAS  Google Scholar 

  • Waring, R.H. and Running, S.W. 1976. Water uptake, storage and transpiration by conifers: A physiological model. — In: Lange, O., Kappen, L. and Schulze, E.D. (eds). Water and Plant Life — Problems and Modern Approaches. Springer-Verlag, Berlin, pp. 182–202.

    Google Scholar 

  • Waring, R.H. and Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. — Science 204: 1380–1386.

    PubMed  CAS  Google Scholar 

  • Waring, R.H. and Schlesinger, W.H. 1985. Forest Ecosystems: Concepts and Management. — Academic Press, Orlando, FL. 340 pp.

    Google Scholar 

  • Waring, R.H., Emmingham, W.H., Gholz, H.L. and Grier, C.C. 1978. Variation in maximum leaf area in Oregon and its ecological significance. — For. Sci. 24: 131–140.

    Google Scholar 

  • Waring, R.H., Schroeder, P.E. and Oren, R. 1982. Application of the pipe model theory to predict canopy leaf area. — Can. J. For. Res. 12: 556–560.

    Google Scholar 

  • Way, J.B., Paris, J., Kasischke, E., Slaughter, C., Viereck, L., Christensen, N., Dobson, M., Ulaby, F., Richards, J., Milne, A., Sieber, A., Ahern, F., Simonett, D., Hoffer, R., Imhoff, M. and Weber, J. 1990. The effect of changing environmental conditions on microwave signatures of forest ecosystems: Preliminary results of the March 1988 Alaska SAR experiment. — Int. J. Rem. Sens. 11: 1119–1144.

    Google Scholar 

  • Welles, J.M. and Norman, J.M. 1991. Instrument for indirect measurement of canopy architecture. — Agron. J. 83: 818–825.

    Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. — Nature 335: 154–156.

    Google Scholar 

  • Williams, D.L., Goward, S.N. and Walthall, C.L. 1984. Collection of in situ forest canopy spectra using a helicopter: A discussion and preliminary results. — In: Proceedings of the Tenth International Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, IN. IEEE, New York, pp. 94–106.

    Google Scholar 

  • Wrigley, R.C., Spanner, M.A., Slye, R.E., Peuschel, R. and Aggarwal, H.R. 1992. Atmospheric correction of remotely sensed image data by a simplified model. — J. Geophys. Res. 97(D17): 18797–18814.

    Google Scholar 

  • Wu, Y. and Strahler, A.H. 1994. Remote estimation of crown size, stand density, and biomass on the Oregon transect. — Ecol. Appl. 4(2): 299–312.

    Google Scholar 

  • Yoder, B. 1992. “Photosynthesis of conifers: Influential factors and potential for remote sensing.” — Ph.D. dissertation, Oregon State University, Corvallis, OR. 127 pp.

    Google Scholar 

  • Zobel, D.B., McKee, W.A., Hawk, GM. and Dyrness, C.T. 1976. Relationships of environment to composition, structure and diversity of forest communities of the central western Cascades of Oregon. — Ecol. Monogr. 46: 135–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peterson, D.L. (1997). Forest Structure and Productivity along the Oregon Transect. In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics