Skip to main content

Combining Remote Sensing and Forest Ecosystem Modeling: An Example Using the Regional HydroEcological Simulation System (RHESSys)

  • Chapter
The Use of Remote Sensing in the Modeling of Forest Productivity

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

Images from airborne or satellite-based remote sensing systems are the only data available for regional and global productivity studies that do not require interpolation or extrapolation. Four categories of image use are identified: image classification, model initialization, model input and model verification. Model initialization using vegetation indices derived from images is discussed using a regional modeling framework, the Regional HydroEcological Simulation System (RHESSys). In this chapter, we illustrate RHESSys’ sensitivity to soil moisture and the interrelationships between the soil data theme and the vegetation and climate data themes. Improving image transfer functions can increase the quality of vegetation estimates; however, ancillary data (such as topography and soil data) are also needed at appropriate levels of accuracy and precision. An example simulation is provided, which uses vegetation data from two watersheds in western Montana. Results demonstrate the model’s sensitivity to soil data in a wet, dry climate, and indicate the importance of considering the data collection process as an integrated effort guided by modeling requirements and model sensitivity. Additional consideration must be made for validation and collection of independent data for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E. and Rasmussen, J. 1986. An introduction to the European hydrological system — Systeme Hydrologique Europeen, “SHE”: History and philosophy of a physically-based distributed modeling system. — J. Hydrol. 87: 45–59.

    Article  Google Scholar 

  • Band, L.E. 1986. Topographic partition of watershed with digital analysis of models. — Water Res. Res. 22: 15–24.

    Article  Google Scholar 

  • Band, L.E. 1993. Effect of land surface representation on forest water and carbon budgets. — J. Hydrol. 150: 749–772.

    Article  Google Scholar 

  • Band, L.E., Running, S.W., Peterson, D.L., Lammers, R., Dungan, J.L. and Nemani, R.R. 1991. Forest ecosystem processes at the watershed scale: Basis for a distributed model. — Ecol. Model. 56: 171–196.

    Article  Google Scholar 

  • Band, L.E., Patterson, P., Nemani, R.R. and Running, S.W. 1993. Forest ecosystem processes at the watershed scale — Incorporating hillslope hydrology. — Agric. For. Meteorol. 63: 93–126.

    Article  Google Scholar 

  • Beven, K.J. and Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. — Hydrol. Sci. Bull. 24: 43–69.

    Article  Google Scholar 

  • Bonan, G.B. 1991. Atmosphere-biosphere exchange of carbon dioxide in boreal forests. — J. Geophys. Res. 96: 7301–7312.

    Article  CAS  Google Scholar 

  • Bristol, K.L. and Campbell, G.S. 1984. On the relationship between incoming solar radiation and daily maximum and minimum air temperature. — Agric. For. Meteorol. 31: 159–166.

    Article  Google Scholar 

  • Buffo, J., Fritschen, L. and Murphy, J. 1972. Direct solar radiation on various slopes from 0° to 60° north latitude. — USDA Forest Service, Research Paper PNW-142, Pacific Northwest Forest and Range Experiment Station, Portland, OR. 74 pp.

    Google Scholar 

  • Burrough, P.A. 1986. Digital elevation models. — In: Principles of GIS for Land Resources Assessments. Oxford University Press, Oxford, UK, pp. 39–56.

    Google Scholar 

  • Campbell, G.S. 1977. An Introduction to Environmental Biophysics. — Springer-Verlag, New York. 159 pp.

    Book  Google Scholar 

  • Carlson, T.N., Perry, E.M. and Schmugge, T.J. 1990. Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields. — Agric. For. Meteorol. 52: 45–69.

    Article  Google Scholar 

  • Cary, E. and Rosenzweig, C. 1987. Determination of vegetated fraction of surface from satellite measurements. — Adv. Space Res. 7: 77–80.

    Article  Google Scholar 

  • Coughlan, J.C. 1991. “Biophysical aggregations of a forested landscape.” — Ph.D. dissertation, University of Montana, Missoula.

    Google Scholar 

  • Coughlan, J.C. and Running, S.W. 1989a. Variable landscape aggregation for large scale watershed evaporation estimates. — In: Symposia Proceedings on Headwaters Hydrology, June 27–30, 1989, Missoula, MT. AWRA, Bethesda, MD, pp. 75–82.

    Google Scholar 

  • Coughlan, J.C. and Running, S.W. 1989b. An expert system to aggregate biophysical attributes of a forested landscape within a geographic information system. AI Applications. — Nat. Res. Manage. 3: 35–43.

    Google Scholar 

  • Coughlan, J.C. and Running, S.W. 1995. Regional ecosystem simulation: A general model for simulating snow accumulation and melt in mountainous terrain. — Land. Ecol. (in press).

    Google Scholar 

  • Dickenson, R.E., Henderson-Sellers, A., Kennedy, P.J. and Wilson, M.F. 1986. Biosphere-Atmosphere Transfer Scheme for the NCAR community climate model. — NCAR, Technical Note NCAR/TN-275+STR, Boulder, CO. 72 pp.

    Google Scholar 

  • Donner, B.L. and Running, S.W. 1986. Water stress response after thinning Pinus contorta stands in Montana. — For. Sci. 32(3): 614–625.

    Google Scholar 

  • Dougherty, D. 1990. sed & awk. — O’Reilly & Associates, Inc., Sebastopol, CA. 414 pp.

    Google Scholar 

  • Dungan, J.L., Peterson, D.L. and Curran, P.J. 1994. Alternative approaches for mapping vegetation quantities using ground and image data. — In: Michener, W., Brunt, J. and Stafford, S. (eds). Environmental Information Management and Analysis: Ecosystem to Global Scales. Taylor & Francis, London, pp. 237–261.

    Google Scholar 

  • Ehleringer, J.R. and Field, C.B. (eds). 1993. Scaling Physiological Processes: Leaf to Globe. — Academic Press, San Diego, CA. 388 pp.

    Google Scholar 

  • Foody, G. and Curran, P. (eds). 1994. Environmental Remote Sensing From Regional to Global Scales. — J. Wiley and Sons, Chichester, UK. 238 pp.

    Google Scholar 

  • Garnier, B.J. and Ohmura, A. 1968. A method of calculating the direct shortwave radiation income of slopes. — J. Appl. Meteorol. 7: 796–800.

    Article  Google Scholar 

  • Gholz, H.L., Curran, P.J., Kupiec, J.A. and Smith, G.M. 1996. Assessing leaf area and canopy biochemistry of Florida pine plantations using remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–22.

    Google Scholar 

  • Goel, N.S. and Deering, D.W. 1985. Evaluation of a canopy reflectance model for LAI estimation through its inversion. — IEEE Trans. Geosci. Rem. Sens. 23: 674–684.

    Article  Google Scholar 

  • Goodchild, M.F., Parks, B.O. and Steyaert, L.T. 1993. Environmental Modeling with GIS. — Oxford University Press, London. 488 pp.

    Google Scholar 

  • Graetz, D. 1990. Remote sensing of terrestrial ecosystem structure: An ecologist’s pragmatic view. — In: Hobbs, R.J. and Mooney, H.A. (eds). Remote Sensing of Biosphere Functioning. Springer-Verlag, New York, pp. 5–30.

    Chapter  Google Scholar 

  • Hungerford, R.D., Nemani, R.R., Running, S.W. and Coughlan, J.C. 1989. MTCLIM — A mountain microclimate simulation model. — USDA Forest Service, Research Paper INT-414, Intermountain Research Station, Ogden, UT. 52 pp.

    Google Scholar 

  • Jupp, D.L.B. and Walker, J. 1996. Detecting structural and growth changes in woodlands and forests using geometric optical modelling. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–108.

    Google Scholar 

  • Lathrop, R.G.J., Aber, J.D., Bognar, J.A., Ollinger, S.V., Casset, S. and Ellis, J.M. 1994. GIS development to support regional simulation modelling of north-eastern (USA) forest ecosystems. — In: Michener, W., Brunt, J. and Stafford, S. (eds). Environmental Information Management and Analysis: Ecosystem to Global Scales. Taylor & Francis, London, pp. 431–451.

    Google Scholar 

  • Lee, T.J., Pielkie, R.A., Kittel, T.G.F. and Weaver, J.F. 1993. Atmospheric modeling and its spatial representation of land surface characteristics. — In: Goodchild, M.F., Parks, B.O. and Steyaert, L.T. (eds). Environmental Modeling with GIS. Oxford Press, New York, pp. 108–122.

    Google Scholar 

  • Leprieur, C., Verstraete, M.M., Pinty, B. and Chehbouni, A. 1995. NOAA/AVHRR vegetation indices: Suitability for monitoring fractional vegetation cover of the terrestrial biosphere. — In: Proceedings of the Sixth International ISPRS Symposium on Physical Measurements and Signatures in Remote Sensing, January 17–21, 1995, Val d’Isere, France, pp. 1103–1110.

    Google Scholar 

  • Lohammar, T., Larsson, S., Linder, S. and Falk, S.O. 1980. FAST — Simulation models of gaseous exchange in Scots pine. — Ecol. Bull. (Stockholm) 32: 505–523.

    Google Scholar 

  • Loveland, T.R., Merchant, J.W., Ohlen, D.O. and Brown, J.F. 1991. Development of a land cover characteristics database for the conterminous U.S. — Photogramm. Engin. Rem. Sens. 57: 1453–1463.

    Google Scholar 

  • Martin, M.E. and Aber, J.D. 1996. Estimating forest canopy characteristics as inputs for models of forest carbon exchange by high spectral resolution remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61–72.

    Google Scholar 

  • McLeod, S.D. and Running, S.W. 1987. Comparing site quality indices and productivity in ponderosa pine stands of western Montana. — Can. J. For. Res. 18: 346–352.

    Article  Google Scholar 

  • McMurtrie, R.E., Leuning, R., Thompson, WA. and Wheeler, A.M. 1992. A model of canopy photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange. — For. Ecol. Manage. 52: 261–278.

    Article  Google Scholar 

  • Nemani, R.R. and Running, S.W. 1989. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. — J. Appl. Meteorol. 28: 276–284.

    Article  Google Scholar 

  • Nemani, R.R., Pierce, L.L., Running, S.W. and Goward, S.N. 1993a. Developing satellite-derived estimates of surface moisture status. — J. Appl. Meteor. 32: 548–557.

    Article  Google Scholar 

  • Nemani, R.R., Pierce, L.L., Running, S.W. and Band, L.E. 1993b. Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed leaf area index estimates. — Int. J. Rem. Sens. 14: 2519–2534.

    Article  Google Scholar 

  • Nemani, R.R., Band, L.E., Running, S.W. and Peterson, D.L. 1993c. Regional HydroEcological Simulation System: An illustration of the integration of ecosystem models in a GIS. — In: Goodchild, M.F., Parks, B.O. and Steyaert, L.T. (eds). Environmental Modeling with GIS. Oxford University Press, New York, pp. 296–304.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S. 1987. Analysis of factors controlling soil organic levels in Great Plains grasslands. — Soil Sci. Soc. Am. J. 51: 1173–1179.

    Article  CAS  Google Scholar 

  • Rosema, A., Verhoef, W., Noorbergen, H. and Borgesius, J.J. 1992. A new forest light interaction model in support of forest monitoring. — Rem. Sens. Environ. 42: 23–41.

    Article  Google Scholar 

  • Running, S.W. 1984. Microclimate control of forest productivity: Analysis by computer simulation of annual transpiration and photosynthesis balance in differing environments. — Agric. For. Meteorol. 23: 267–288.

    Article  Google Scholar 

  • Running, S.W. and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. 1. Hydrological balance, canopy gas exchange and primary production processes. — Ecol. Model. 42: 125–154.

    Article  CAS  Google Scholar 

  • Running, S.W. and Gower, S.T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. 2. Dynamic carbon and nitrogen budgets. — Tree Physiol. 9: 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Running, S.W., Nemani, R.R. and Hungerford, R.D. 1987. Extrapolation of synoptic meteorological data in mountainous terrain, and its use for simulating forest evapotranspiration and photosynthesis. — Can. J. For. Res. 17: 472–483.

    Article  Google Scholar 

  • Running, S.W., Nemani, R.R., Peterson, D.L., Band, L.E., Potts, D.E., Pierce, L.L. and Spanner, M.A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. — Ecology 70(4): 1090–1101.

    Article  Google Scholar 

  • Running, S.W., Loveland, T.R. and Pierce, L.L. 1994. A vegetation classification logic based on remote sensing for use in global biogeochemical models. — Ambio 23: 77–81.

    Google Scholar 

  • Ryan, M.G. 1991. Effects of climate change on plant respiration. — Ecol. Appl. 1: 157–167.

    Article  Google Scholar 

  • Saxton, K.E., Rawls, W.J., Romberger, J.S. and Papendick, R.I. 1986. Estimating generalized soil-water characteristics from texture. — Soil Sci. Soc. Am. J. 50: 1031–1036.

    Article  Google Scholar 

  • Schneider, D.C. 1993. Quantitative Ecology: Spatial and Temporal Scaling. — Academic Press, San Diego, CA. 395 pp.

    Google Scholar 

  • Sellers, P.F. and Dorman, J.L. 1987. Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data. — J. Clim. Appl. Meteorol. 26: 622–651.

    Article  Google Scholar 

  • Townshend, J.R.G. 1994. Global data sets for land applications from the Advanced Very High Resolution Radiometer: An introduction. — Int. J. Rem. Sens. 15(17): 3319–3332.

    Article  Google Scholar 

  • USGS. 1990. Digital Elevation Models. National Program Technical Instructions, Data Users Guide 5. — U.S. Geologic Survey, Reston, VA. 40 pp.

    Google Scholar 

  • Waring, R.H. and Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. — Science 204: 1380–1386.

    Article  PubMed  CAS  Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. — Nature 335: 154–156.

    Article  Google Scholar 

  • Wigmosta, M.S., Vail, L.W. and Lettenmaier, D.P. 1994. A distributed hydrology-vegetation model for complex terrain. — Water Res. Res. 30: 1665–1679.

    Article  Google Scholar 

  • Zhu, A. and Band, L.E. 1994. A knowledge-based approach to data integration for soil mapping. — Can. J. Rem. Sens. 20(4): 408–418.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coughlan, J.C., Dungan, J.L. (1997). Combining Remote Sensing and Forest Ecosystem Modeling: An Example Using the Regional HydroEcological Simulation System (RHESSys). In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics