Skip to main content

Integrating Remotely Sensed Spatial Heterogeneity with a Three-dimensional Forest Succession Model

  • Chapter
The Use of Remote Sensing in the Modeling of Forest Productivity

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

To address questions concerning the effects of naturally occurring or anthropogenically induced spatial heterogeneity on forested stands and landscapes, it is necessary to couple spatially explicit simulators with georeferenced data. In this study, we quantified heterogeneity within a forested scene from central Maine by using edge detection algorithms designed for synthetic aperture radar (SAR) imagery. A spatially extended forest gap model that incorporates a three-dimensional solar radiation routine was used to simulate forest stand productivity as a function of edge orientation. The model results were then scaled up to the landscape based on the extent of edge and edge orientations detected in the SAR scene. The estimated increase in productivity, as a function of light-mediated edge effects, averaged ≈26% to ≈4% at the pixel (12.1 × 12.1-m) and scene (≈3600-ha) scales, respectively, over a 120-yr period after the edge was created.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, M. and Guidon, B. 1990. Statistical edge detection operators for linear feature extraction in SAR images. — Can. J. Rem. Sens. 16: 10–19.

    Google Scholar 

  • Bidlake, W.R., Campbell, G.S., Papendick, R.I. and Cullum, R.F. 1992. Seed-zone temperature and moisture conditions under conventional no-tillage in Alaska. — Soil Sci. Soc. Am. J. 56: 1904–1910.

    Article  Google Scholar 

  • Bonan, G.B. 1989. A computer model of the solar radiation, soil moisture, and soil thermal regimes in boreal forests. — Ecol. Model. 45: 275–306.

    Article  Google Scholar 

  • Botkin, D.B. 1993. Forest dynamics: An ecological model. — Oxford University Press, Oxford, UK. 309 pp.

    Google Scholar 

  • Bradshaw, G.A. and Spies, T.A. 1992. Characterizing canopy gap structure in forests using wavelet analysis. — J. Ecol. 80: 205–215.

    Article  Google Scholar 

  • Busing, R.T. 1991. A spatial model of forest dynamics. — Vegetatio 92: 167–179.

    Google Scholar 

  • Caldwell, M.M. and Pearcy, R.W. 1994. Exploitation of environmental heterogeneity by plants: Ecophysiological processes above-and belowground. — Academic Press, San Diego, CA. 429 pp.

    Google Scholar 

  • Chen, J., Franklin, J.F. and Spies, T.A. 1992. Vegetation responses to edge environments in old-growth Douglas-fir forests. — Ecol. Appl. 2: 387–396.

    Article  Google Scholar 

  • Chen, J., Franklin, J.F. and Spies, T.A. 1993. Contrasting microclimates among clearcut, edge, and interior or old-growth Douglas-fir forest. — Agric. For. Meteor. 63: 219–237.

    Article  Google Scholar 

  • Clark, J.S. 1993. Scaling at the population level: Effects of species composition and population structure. — In: Ehleringer, J.R. and Field, C.B. (eds). Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego, CA, pp. 255–285.

    Chapter  Google Scholar 

  • Cohen, W.B. and Spies, T.A. 1992. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. — Rem. Sens. Environ. 41: 1–17.

    Article  Google Scholar 

  • Cohen, W.B., Spies, T.A. and Bradshaw, G.A. 1990. Semivariograms of digital imagery for analysis of conifer canopy structure. — Rem. Sens. Environ. 34: 167–178.

    Article  Google Scholar 

  • Czárán, T. and Bartha, S. 1992. Spatiotemporal dynamic models of plant populations and communities. — Trends Ecol. Evol. 7: 38–42.

    Article  PubMed  Google Scholar 

  • Denslow, J.S. and Spies, T.A. 1990. Canopy gaps in forest ecosystems: An introduction. — Can. J. For. Res. 20: 619.

    Article  Google Scholar 

  • Deren, L. and Juliang, S. 1994. The wavelet and its application in image edge detection. — ISPRS J. Photogramm. Rem. Sens. 49: 4–11.

    Article  Google Scholar 

  • Dougherty, E.R. 1992. An Introduction to Morphological Image Processing. — SPIE Press, Bellingham, WA. 161 pp.

    Google Scholar 

  • Esseen, P. 1994. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. — Biol. Conserv. 68: 19–28.

    Article  Google Scholar 

  • Fisher, R.A. 1925. Statistical Methods for Research Workers. — Oliver and Boyd, Edinburgh. 319 pp.

    Google Scholar 

  • Fortin, M. 1994. Edge detection algorithms for two-dimensional ecological data. — Ecology 75: 956–965.

    Article  Google Scholar 

  • Friend, A.D., Running, S.W. and Shugart, H.H. 1993. A physiology-based gap model of forest dynamics. — Ecology 74: 792–797.

    Article  Google Scholar 

  • Ghiselin, J. 1977. Analyzing ecotones to predict biotic productivity. — Environ. Manage. 1: 235–238.

    Article  Google Scholar 

  • Hall, FG., Botkin, D.B., Strebel, D.E., Woods, K.D. and Goetz. S.J. 1991. Large-scale patterns of forest succession as determined by remote sensing. — Ecology 72: 628–640.

    Article  Google Scholar 

  • Hansen, A.J. and di Castri, F. 1992. Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. — Springer-Verlag, New York. 452 pp.

    Book  Google Scholar 

  • Harding, D.J., Blair, J.B., Garvin, J.B. and Lawrence, W.T. 1994. Laser altimetry waveform measurement of vegetation canopy structure. — In: Proceedings of the IGARSS’94 Symposium, August 8–12, 1994, California Institute of Technology, Pasadena, CA, vol. 2, pp. 1251–1253.

    Google Scholar 

  • Held, D.N. et al. 1988. The NASA/JPL multifrequency, multipolarization airborne SAR system. — In: Proceedings of the IGARSS’88 Symposium, September 12–16, 1988, Edinburgh, pp. 317–322.

    Google Scholar 

  • Holland, M., Risser, P.G. and Naiman, R.J. 1991. Ecotones: The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. — Chapman and Hall, New York. 142 pp.

    Google Scholar 

  • Holling, C.S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. — Ecol. Monogr. 62: 447–502.

    Article  Google Scholar 

  • Iverson, L.R., Graham, R.L. and Cook, E.A. 1989. Applications of satellite remote sensing to forested ecosystems. — Land. Ecol. 3: 131–143.

    Article  Google Scholar 

  • Johnston, C.A. and Bonde, J. 1989. Quantitative analysis of ecotones using a geographic information system. — Photogramm. Engin. Rem. Sens. 55: 1643–1647.

    Google Scholar 

  • Johnston, C.A., Pastor, J. and Pinay, G. 1992. Quantitative methods for studying landscape boundaries. — In: Hansen, A.J. and di Castri, F. (eds). Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Springer-Verlag, New York, pp. 107–125.

    Chapter  Google Scholar 

  • Kachi, N., Yasuoka, Y., Totsuka, T. and Suzuki, K. 1986. A stochastic model for describing revegetation following forest cutting: An application for remote sensing. — Ecol. Model. 32: 105–117.

    Article  Google Scholar 

  • King, A.W. 1991. Translating models across scales in the landscape. — In: Turner, M.G. and Gardner, R.H. (eds). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 479–517.

    Chapter  Google Scholar 

  • Kolasa, J. and Pickett, S.T.A. 1991. Ecological Heterogeneity. — Springer-Verlag, New York. 332 pp.

    Book  Google Scholar 

  • Krummel, J.R. 1986. Landscape ecology: Spatial data and analytical approaches. — In: Dyer, M.I. and Crossley, D.A., Jr. (eds). Coupling of Ecological Studies with Remote Sensing. U.S. Man and the Biosphere Program, Department of State, Washington, DC, pp. 125–132.

    Google Scholar 

  • Krummel, J.R., Gardner, R.H., Sugihara, G., O’Neill, R.V. and Coleman, PR. 1987. Landscape patterns in a disturbed environment. — Oikos 48: 321–324.

    Article  Google Scholar 

  • Kux, H.J.H. and Henebry, G.M. 1994. Evaluating anisotropy in SAR imagery using lacunarity functions. — Int. Arch. Photogramm. Rem. Sens. 30: 141–145.

    Google Scholar 

  • LaGro, J., Jr. 1991. Assessing patch shape in landscape mosaics. — Photogramm. Engin. Rem. Sens. 57: 285–293.

    Google Scholar 

  • Lee, N.J. and Nakane, K. 1996. Forest vegetation classification and biomass estimation based on Landsat TM data in a mountainous region of west Japan. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 159–171.

    Google Scholar 

  • Leemans, R. and Prentice, I.C. 1987. Description and simulation of tree-layer composition and size distributions in a primaeval Picea-Pinus forest. — Vegetatio 69: 147–156.

    Article  Google Scholar 

  • Levine, E.R., Ranson, K.J., Smith, J.A., Williams, D.L., Knox, R.G., Shugart, H.H., Urban, D.L. and Lawrence, W.T. 1993. Forest ecosystem dynamics: Linking forest succession, soil process and radiation models. — Ecol. Model. 65: 199–219.

    Article  Google Scholar 

  • Levine, E.R., Knox, R.G. and Lawrence, W.T. 1994. Relationships between soil properties and vegetation at the Northern Experimental Forest, Howland, Maine. — Rem. Sens. Environ. 47: 231–241.

    Article  Google Scholar 

  • Liebermann, M., Liebermann, D. and Peralta, R. 1989. Forests are not just swiss cheese: Canopy stereogeometry of non-gaps in tropical forests. — Ecology 70: 550–552.

    Article  Google Scholar 

  • Lopes, A., Nezry, E., Touzi, R. and Laur, H. 1993. Structure detection and statistical adaptive speckle filtering in SAR images. — Int. J. Rem. Sens. 14: 1735–1758.

    Article  Google Scholar 

  • Major, J. 1951. A functional factorial approach to plant ecology. — Ecology 32: 392–412.

    Article  Google Scholar 

  • Martin, M.E. and Aber, J.D. 1996. Estimating forest canopy characteristics as inputs for models of forest carbon exchange by high spectral resolution remote sensing. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61–72.

    Google Scholar 

  • Matlack, G.R. 1993. Microenvironment variation within and among forest edge sites in the eastern United States. — Biol. Conserv. 66: 185–194.

    Article  Google Scholar 

  • Matlack, G.R. 1994. Vegetation dynamics of the forest edge — Trends in space and successional time. — J. Ecol. 82: 113–123.

    Article  Google Scholar 

  • Mcintosh, R.P. 1985. The Background of Ecology: Concept and Theory. Cambridge University Press, Cambridge, UK. 383 pp.

    Book  Google Scholar 

  • Miller, L.D. and Williams, D.L. 1978. Monitoring forest canopy alteration around the world with digital analysis of Landsat imagery. — In: Proceedings of the I.U.F.R.O. International Symposium on Remote Sensing for Observation and Inventory of Earth Resources and the Endangered Environment, July 2–8, 1978, Freiburg, Federal Republic of Germany, pp. 1721–1761.

    Google Scholar 

  • Mooney, H.A. and Chapin, F.S. III. 1994. Future directions of global change research in terrestrial ecosystems. — Trends Ecol. Evol. 9: 371–372.

    Article  PubMed  CAS  Google Scholar 

  • Moran, E.F., Brondizo, E., Mausel, P. and Wu, Y. 1994. Integrating Amazonian vegetation, land use and satellite data. — Bioscience 44: 329–338.

    Article  Google Scholar 

  • Musick, H.B. and Grover, H.D. 1991. Image textural measures as indices of landscape pattern. — In: Turner, M.G. and Gardner, R.H. (eds). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 77–103.

    Chapter  Google Scholar 

  • Nelson, R., Horning, N. and Stone, TA. 1987. Determining the rate of conversion in Mato Grasso, Brazil, using Landsat MSS and AVHRR data. — Int. J. Rem. Sens. 8: 1767–1784.

    Article  Google Scholar 

  • O’Neill, R.V, Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H. and Graham, R.L. 1988. Indices of landscape pattern. — Land. Ecol. 1: 153–162.

    Article  Google Scholar 

  • Pacala, S.W. and Tilman, D. 1994. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. — Am. Nat. 143: 222–257.

    Article  Google Scholar 

  • Pacala, S.W., Canham, C.D. and Silander, J.A. 1993. Forest models defined by field measurements. 1. The design of a northeastern forest simulator. — Can. J. For. Res. 23: 1980–1988.

    Article  Google Scholar 

  • Pastor, J. and Post, W.M. 1985. Development of a linked forest productivity-soil process model. ORNL/TM-9519. — Oak Ridge National Lab, Oak Ridge, TN. 162 pp.

    Google Scholar 

  • Pastor, J. and Broschart, M. 1990. The spatial pattern of a northern conifer-hardwood landscape. — Land. Ecol. 4: 55–68.

    Article  Google Scholar 

  • Phillips, O.L. and Gentry, A.H. 1994. Increasing turnover through time in tropical forests. — Science 263: 954–958.

    Article  PubMed  CAS  Google Scholar 

  • Platt, W.J. and Strong, D.R. 1989. Gaps in forest ecology. — Ecology 70: 535.

    Article  Google Scholar 

  • Prihodko, L., Hammond, K., Knox, R.G., Kalb, V. and Levine, E.R. 1994. NASA/FED welcome page. — Available from NASA Goddard Space Flight Center, Greenbelt, MD, via the Internet: http://fedwww.gsfc.nasa.gov

  • Quattrochi, D.A. and Pelletier, R.E. 1991. Remote sensing for analysis of landscapes: An introduction. — In: Turner, M.G. and Gardner, R.H. (eds). Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, pp. 51–76.

    Chapter  Google Scholar 

  • Ranney, J.W. 1977. Forest island edges — Their structure, development, and importance to regional forest ecosystem dynamics. EDFB/IBP-77/1. — Oak Ridge National Lab, Environmental Science Division Publication 1069, Oak Ridge, TN. 36 pp.

    Google Scholar 

  • Ranney, J.W., Bruner, M.C. and Levenson, J.B. 1981. The importance of edge in the structure and dynamics of forest islands. — In: Burgess, R.L. and Sharpe, D.M. (eds). Forest Island Dynamics in Man-dominated Landscapes. Springer-Verlag, New York, pp. 67–95.

    Chapter  Google Scholar 

  • Ranson, K.J. and Williams, D.L. 1992. Remote sensing technology for forest ecosystem analysis. — In: Shugart, H.H., Leemans, R. and Bonan, G.B. (eds). A Systems Analysis of the Global Boreal Forest. Cambridge University Press, Cambridge, UK, pp. 267–290.

    Chapter  Google Scholar 

  • Ranson, K.J. and Sun, G. 1993. Retrieval of forest spatial pattern from SAR images. — In: Proceedings of the IGARSS’93 Symposium, August 18–21, 1993, Tokyo, pp. 1213–1215.

    Google Scholar 

  • Ranson, K.J. and Sun, G. 1994. Mapping biomass for a northern forest using multifrequency SAR data. — IEEE Trans. Geosci. Rem. Sens. 32: 388–396.

    Article  Google Scholar 

  • Ranson, K.J. and Smith, J.A. 1995. Analyses of northern forest spatial patterns using fractal dimensions. — IEEE Trans. Geosci. Rem. Sens. (in press).

    Google Scholar 

  • Risser, P. 1993. Ecotones. — Ecol. Appl. 3: 367–368.

    Article  Google Scholar 

  • Running, S.W., Peterson, D.L., Spanner, M.A. and Teuber, K.B. 1986. Remote sensing of coniferous forest leaf area. — Ecology 67: 273–276.

    Article  Google Scholar 

  • Running, S.W., Nemani, R.R., Peterson, D.L., Band, L.E., Potts, D.F., Pierce, L.L. and Spanner, M.A. 1989. Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. — Ecology 70: 1090–1101.

    Article  Google Scholar 

  • Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrell, W.M., Virginia, R.A. and Whitford, W.G. 1990. Biological feedbacks in global desertification. — Science 247: 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, P.A., Urban, D.L. and Weinstein, D.A. 1994. Partitioning the importance of abiotic constraints and biotic processes in generating vegetation patterns on landscapes. — In: Program and Abstracts of the Ninth Annual U.S. Landscape Ecology Symposium, March 23–26, 1994, Tucson, AZ, p. 116.

    Google Scholar 

  • Shugart, H.H. 1984. A Theory of Forest Dynamics. — Springer-Verlag, New York. 278 pp.

    Book  Google Scholar 

  • Shugart, H.H., Smith, T.M. and Post, W.M. 1992. The potential for application of individual-based simulation models for assessing the effects of global change. — Ann. Rev. Ecol. Syst. 23: 15–38.

    Google Scholar 

  • Skole, D.L. and Tucker, C.J. 1993. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. — Science 263: 954–958.

    Google Scholar 

  • Smith, T.M. and Urban, D.L. 1988. Scale and resolution of forest structural pattern. — Vegetatio 74: 143–150.

    Article  Google Scholar 

  • Smith, J.A. and Goltz, S.M. 1994. Updated thermal model using simplified short-wave radiosity calculations. — Rem. Sens. Environ. 47: 167–175.

    Article  Google Scholar 

  • Soulé, M.E. and Kohm, K.A. 1989. Research Priorities for Conservation Biology. — Island Press, Washington, DC. 97 pp.

    Google Scholar 

  • Spanner, M., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J. and Gong, P. 1994. Remote sensing of seasonal leaf area index across the Oregon transect. — Ecol. Appl. 4: 258–271.

    Article  Google Scholar 

  • Spies, T.A., Ripple, W.J. and Bradshaw, G.A. 1994. Dynamics and pattern of a managed coniferous forest landscape in Oregon. — Ecol. Appl. 4: 555–568.

    Article  Google Scholar 

  • Steffen, W.L., Walker, B.H., Ingram, J.S. and Koch, G.W. 1992. IGBP Report 21. Global change and terrestrial ecosystems: The operational plan. — International Geosphere-Biosphere Program/International Council of Scientific Unions, Stockholm. 95 pp.

    Google Scholar 

  • Syrjänen, K., Kalliola, R., Puolasmaa, A. and Mattsson, J. 1994. Landscape structure and forest dynamics in subcontinental Russia European taiga. — Ann. Zool. Fenn. 31: 19–34.

    Google Scholar 

  • Touzi, R., Lopes, A. and Bousquet, P. 1988. A statistical and geometrical edge detector for SAR images. — IEEE Trans. Geosci. Rem. Sens. 26: 764–773.

    Article  Google Scholar 

  • Tucker, C.J., Townshend, J.R.G. and Goff, T.E. 1985. African land-cover classification using satellite data. — Science, 227: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Ulaby, F.T., Kouyate, F., Brisco, B. and Williams, T.H.L. 1986. Textural information in SAR images. — IEEE Trans. Geosci. Rem. Sens. 24: 235–245.

    Article  Google Scholar 

  • Urban, D.L., O’Neill, R.V. and Shugart, H.H. 1987. Landscape ecology. — Bioscience 37: 119–127.

    Article  Google Scholar 

  • Urban, D.L., Bonan, G.B., Smith, T.M. and Shugart, H.H. 1991. Spatial applications of gap models. — For. Ecol. Manage. 42: 95–110.

    Article  Google Scholar 

  • Ustin, S.L., Wessman, C.A., Curtis, B., Kasischke, E., Way, J. and Vanderbilt, V.C. 1991. Opportunities for using the EOS imaging spectrometers and synthetic aperture radar in ecological models. — Ecology 72: 1934–1945.

    Google Scholar 

  • Vitousek, P.M. 1994. Beyond global warming: Ecology and global change. — Ecology 75: 1861–1876.

    Article  Google Scholar 

  • Wales, B.A. 1967. Climate, microclimate and vegetation relationships on north and south forest boundaries in New Jersey. — William L. Hutcheson Memorial Forest Bulletin 2: 1–60.

    Google Scholar 

  • Wales, B.A. 1972. Vegetation analysis of north and south edges in a mature oak-hickory forest. — Ecol. Monogr. 42: 451–471.

    Article  Google Scholar 

  • Walker, B.H. 1994. Landscape to regional-scale responses of terrestrial ecosystems to global change. — Ambio 23: 67–73.

    Google Scholar 

  • Wallin, D.O., Harmon, M.E., Cohen, W.B., Fiorella, M. and Ferrell, W.K. 1996. Use of remote sensing to model land use effects on carbon flux in forests of the Pacific Northwest, USA. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 219–237.

    Google Scholar 

  • Waring, R.H., Way, J., Hunt, E.R., Jr., Morrisey, L., Ranson, K.J., Weishampel, J., Oren, R. and Franklin, S.E. 1995. Remote sensing with synthetic aperture radar in ecosystem studies. — Bioscience (in press).

    Google Scholar 

  • Way, J., Rignot, E.J.M., McDonald, K.C., Oren, R., Kwok, R., Bonan, G., Dobson, M.C., Viereck, L.A. and Roth, J.E. 1994. Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models. — IEEE Trans. Geosci. Rem. Sens. 32: 353–370.

    Article  Google Scholar 

  • Weishampel, J.F. and Urban, D.L. 1995. Coupling a spatially-explicit forest gap model with a 3-D solar routine to simulate latitudinal effects. — Ecol. Model, (in press).

    Google Scholar 

  • Weishampel, J.F., Urban, D.L., Shugart, H.H. and Smith, J.B. 1992. Semivariograms from a forest transect gap model compared with remotely sensed data. — J. Veg. Sci. 3: 521–526.

    Article  Google Scholar 

  • Weishampel, J.F., Sun, G., Ranson, K.J., LeJeune, K.D. and Shugart, H.H. 1994. Forest textural properties from simulated microwave backscatter: The influence of spatial resolution. — Rem. Sens. Environ. 47: 120–131.

    Article  Google Scholar 

  • Wessman, C.A. 1992. Spatial scales and global change: Bridging the gap from plots to GCM grid cells. — Ann. Rev. Ecol. Syst. 23: 175–200.

    Article  Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. 1988. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. — Nature 335: 154–156.

    Article  Google Scholar 

  • Whittaker, R.H. 1953. A consideration of climax theory: The climax as a population and pattern. — Ecol. Monogr. 23: 41–78.

    Article  Google Scholar 

  • Wiens, J.A., Crawford, C.S. and Gosz, J.R. 1985. Boundary dynamics: A conceptual framework for studying landscape systems. — Oikos 45: 421–427.

    Article  Google Scholar 

  • Williams-Linera, G. 1990. Vegetation structure and environmental conditions of forest edges in Panama. — J. Ecol. 78: 356–373.

    Article  Google Scholar 

  • Woodwell, G.M., Hobbie, J.E., Houghton, R.A., Melillo, J.M., Peterson, B.J., Shaver, G.R., Stone, T.A., Moore, B. and Park, A.B. 1983. Deforestation measured by Landsat: Steps towards a method. — U.S. Department of Energy Publication DOE/EV/10468-1, Washington, DC. 62 pp.

    Google Scholar 

  • Wu, Y.C. and Strahler, A.H. 1994. Remote estimation of crown size, stand density, and biomass on the Oregon transect. — Ecol. Appl. 4: 299–312.

    Article  Google Scholar 

  • Young, A. and Mitchell, N. 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. — Biol. Conserv. 67: 63–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weishampel, J.F., Knox, R.G., Ranson, K.J., Williams, D.L., Smith, J.A. (1997). Integrating Remotely Sensed Spatial Heterogeneity with a Three-dimensional Forest Succession Model. In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics