Skip to main content

Assessing Leaf Area and Canopy Biochemistry of Florida Pine Plantations Using Remote Sensing

  • Chapter
The Use of Remote Sensing in the Modeling of Forest Productivity

Part of the book series: Forestry Sciences ((FOSC,volume 50))

Abstract

Leaf area index (LAI) and the biochemical makeup of forest canopies are critical determinants of carbon (C) gain by forests. However, both variables may be highly unstable in space and time and high spatial resolution measurements made on the ground are difficult and expensive to obtain. We estimated LAI and canopy biochemistry using remotely sensed imagery and data from a field site in north central Florida. Ground measurements indicated a high seasonal fluctuation in LAI, and annual variation of approximately 10%, correlated with the Normalized Difference Vegetation Index (NDVI) derived from Thematic Mapper (TM) imagery. Repeated fertilization affected concentrations of nitrogen (N) and chlorophyll in the pine foliage, but had little effect on concentrations of water, lignin or cellulose. Biochemical differences among samples of whole fresh pine needles were related to reflectance properties determined in the laboratory using a portable spectroradiometer. We then explored coupling laboratory spectral measurements of foliar biochemistry with field spectra by analyzing the signal-to-noise ratio (SNR) of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Results indicate that the AVIRIS provides data with an SNR barely sufficient to estimate foliar biochemistry; maximum SNRs for slash pine are suggested. Finally, using actual AVIRIS data and simultaneously obtained field samples, stepwise regression of corrected imagery indicated that three wavebands accounted for 94% of the spectral variation, all in the spectral region of the reflectance red edge. These collective results indicate the feasibility of parameterizing process-level models of primary productivity of P. elliottii stands using remotely sensed data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baret, F., Champion, L., Guyot, G. and Podaire, L. 1987. Monitoring wheat canopies with a high spectral resolution radiometer. — Rem. Sens. Environ. 22: 367–378.

    Article  Google Scholar 

  • Carter, G.A. 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. — Am. J. Bot. 78: 916–924.

    Article  Google Scholar 

  • Colbert, S.R., Jokela, E.J. and Neary, D.G. 1990. Effects of annual fertilization and sustained weed control on dry matter partitioning, leaf area and growth efficiency of juvenile loblolly and slash pine. — For. Sci. 36: 995–1014.

    Google Scholar 

  • Cropper, W.P., Jr., and Gholz, H.L. 1993a. Simulation of the carbon dynamics of a Florida slash pine plantation. — Ecol. Model. 66: 231–249.

    Article  CAS  Google Scholar 

  • Cropper, W.P., Jr., and Gholz, H.L. 1993b. Constructing a seasonal carbon balance for a forested ecosystem. — Clim. Res. 3: 7–12.

    Article  Google Scholar 

  • Cropper, W.P., Jr., and Gholz, H.L. 1994. Evaluating potential response mechanisms of a forest stand to fertilization and night temperature: A case study using Pinus elliottii. — Ecol. Bull. (Copenhagen) 43: 154–160.

    CAS  Google Scholar 

  • Curran, P.J. 1983. Multispectral remote sensing for the estimation of green leaf area index. — Phil. Trans. Roy. Soc. London (Sen A) 309: 257–270.

    Article  Google Scholar 

  • Curran, P.J. 1989. The remote sensing of foliar chemistry. — Rem. Sens. Environ. 29: 271–278.

    Article  Google Scholar 

  • Curran, P.J. 1994. Attempts to drive ecosystem simulation models at local to regional scales. — In: Foody, G.M. and Curran, P.J. (eds). Environmental Remote Sensing from Regional to Global Scales. J. Wiley and Sons, Chichester, UK, pp. 149–166.

    Google Scholar 

  • Curran, P.J. and Kupiec, J.A. 1995. Imaging spectrometry: A new tool for ecology. — In: Danson, F.M. and Plummer, S.E. (eds). Advances in Environmental Remote Sensing. J. Wiley and Sons, Chichester, UK (in press).

    Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. 1990. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. — Tree Physiol. 7: 33–48.

    Article  PubMed  CAS  Google Scholar 

  • Curran, P.J., Dungan, J.L. and Gholz, H.L. 1992. Seasonal LAI in slash pine estimated with Landsat TM. — Rem. Sens. Environ. 39: 3–13.

    Article  Google Scholar 

  • Curran, P.J., Windham, W.R. and Gholz, H.L. 1995. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. 2. — Tree Physiol. 15: 203–206.

    Article  PubMed  Google Scholar 

  • Danson, F.M. 1987. Preliminary evaluation of the relationships between SPOT-1 HRV data and forest stand parameters. — Int. J. Rem. Sens. 8: 1571–1575.

    Article  Google Scholar 

  • Danson, F.M. and Curran, P.J. 1993. Factors affecting the remotely sensed response of coniferous forest plantations. — Rem. Sens. Environ. 43: 55–65.

    Article  Google Scholar 

  • Ewel, K.C. and Gholz, H.L. 1991. A simulation model of the role of belowground dynamics in a Florida pine plantation. — For. Sci. 37: 397–438.

    Google Scholar 

  • Gao, B-C, Heidebrect, K.B. and Goetz, A.F.H. 1992. Atmospheric Removal Program (ATREM) Users Guide. — Center for the Study of Earth from Space, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO.

    Google Scholar 

  • Gaston, L., Nkedi-Kizza, P., Sawka, G. and Rao, P.S.C. 1990. Spatial variability of morphological properties at a Florida flatwoods site. — Soil Sci. Soc. Am. J. 54: 527–533.

    Article  Google Scholar 

  • Gates, D.M. 1980. Biophysical Ecology. — Springer-Verlag, New York. 611 pp.

    Book  Google Scholar 

  • Gholz, H.L. and Fisher, R.F. 1982. Organic matter production and distribution in slash pine (Pinus elliottii) plantations. — Ecology 63: 1827–1839.

    Article  Google Scholar 

  • Gholz, H.L. and Fisher, R.F. 1984. The limits to productivity: Fertilization and nutrient cycling in coastal plain slash pine forests. — In: Stone, E.L. (ed). Forest Soils and Treatment Impacts, Proceedings of the Sixth North American Forest Soils Conference, June 1983, University of Tennessee, Knoxville, TN, pp. 105–120.

    Google Scholar 

  • Gholz, H.L., Grier, C.C., Campbell, A.G. and Brown, A.T. 1979. Equations for Estimating Biomass and Leaf Area of Plants in the Pacific Northwest. — Research Paper 41, Forest Research Lab, Oregon State University, Corvallis, OR.

    Google Scholar 

  • Gholz, H.L., Fisher, R.F. and Pritchett, W.L. 1985a. Nutrient dynamics in slash pine plantation ecosystems. — Ecology 66: 647–659.

    Article  Google Scholar 

  • Gholz, H.L., Perry, C.S., Cropper, W.P., Jr. and Hendry, L.C. 1985b. Litterfall, decomposition and nitrogen and phosphorus dynamics in a chronosequence of slash pine (Pinus elliottii) plantations. — For. Sci. 31: 463–478.

    Google Scholar 

  • Gholz, H.L., Vogel, S.A., Cropper, W.P., Jr., McKelvey, K., Ewel, K.C., Teskey, R.O. and Curran, P.J. 1991. Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida. — Ecol. Monogr. 61: 33–51.

    Article  Google Scholar 

  • Green, R.O., Conel, J.E., Bruegge, C.J., Margolis, J.S., Carrere, V., Vane, G. and Hoover, G. 1992. In-flight calibration of the spectral and radiometric characteristics of AVIRIS in 1991. — In: Summaries of the Third Annual JPL Airborne Geoscience Workshop, NASA, Jet Propulsion Lab, Publication 92-14, Pasadena, CA, pp. 1–4.

    Google Scholar 

  • Jensen, J.R. 1983. Biophysical remote sensing. — Ann. Assoc. Am. Geog. 73: 111–132.

    Article  Google Scholar 

  • Jensen, J.R. and Hodgson, M.E. 1985. Remote sensing of forest biomass: An evaluation using high resolution remote sensor data and loblolly pine plots. — Prof. Geog. 37: 46–56.

    Article  Google Scholar 

  • Mackinney, G. 1941. Absorption of light by chlorophyll solutions. — J. Biol. Chem. 140: 315–322.

    CAS  Google Scholar 

  • Milton, E.J. and Rollin, E.M. 1989. The Geophysical Environmental Research, Inc. IRIS Mark IV Spectroradiometer. A guide for UK users. — Department of Geography, University of Southampton, UK.

    Google Scholar 

  • NOAA. 1989. Climate data — Florida. — National Climate Data Center, National Oceanic and Atmospheric Administration, Asheville, NC.

    Google Scholar 

  • Peterson, D.L. 1991. Report on the workshop Remote Sensing of Plant Biochemical Content: Theoretical and Empirical Studies. — NASA White Paper, NASA, Ames Research Center, Moffett Field, CA. 25 pp.

    Google Scholar 

  • Peterson, D.L. and Running, S.W. 1989. Applications in forest science and management. — In: Asrar, G. (ed). Theory and Applications of Optical Remote Sensing. J. Wiley and Sons, New York, pp. 429–473.

    Google Scholar 

  • Peterson, D.L., Spanner, M.A., Running, S.W., and Teuber, K.B. 1987. Relationship of Thematic Mapper Simulator data to leaf area index of temperate coniferous forests. — Rem. Sens. Environ. 22: 323–341.

    Article  Google Scholar 

  • Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N., Wessman, C.A. and Spanner, M.A. 1988. Remote sensing of forest canopy and leaf biochemical contents. — Rem. Sens. Environ. 24: 85–108.

    Article  Google Scholar 

  • Running, S.W, Peterson, D.L., Spanner, M.A. and Teuber, K.B. 1986. Remote sensing of coniferous forest leaf area. — Ecology 67: 273–276.

    Article  Google Scholar 

  • Spanner, M.A., Pierce, L.L., Peterson, D.L. and Running, S.W. 1990a. Remote sensing of temperate coniferous forest leaf area index: The influence of canopy closure, understory vegetation and background reflectance. — Int. J. Rem. Sens. 11: 95–111.

    Article  Google Scholar 

  • Spanner, M.A., Pierce, L.L., Running, S.W. and Peterson, D.L. 1990b. The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index. — Rem. Sens. Environ. 33: 97–112.

    Article  Google Scholar 

  • Teskey, R.O., Gholz, H.L. and Cropper, W.P, Jr. 1994. The influence of climate and nutrition on net photosynthesis of mature slash pine. — Tree Physiol. 14: 1215–1227.

    Article  PubMed  Google Scholar 

  • Van Soest, P.J. and Wine, R.H. 1968. Determination of lignin and cellulose in acid detergent fiber with permanganate. — J. Assoc. Off. Anal. Chem. 51: 780–785.

    Google Scholar 

  • Wessman, C.A., Aber, J.D., Peterson, D.L. and Melillo, J.M. 1988. Foliar analysis using near infrared reflectance spectroscopy. — Can. J. For. Res. 18: 6–11.

    Article  Google Scholar 

  • Woolley, J.T. 1971. Reflectance and transmittanee of light by leaves. — Plant Physiol. 47: 656–662.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gholz, H.L., Curran, P.J., Kupiec, J.A., Smith, G.M. (1997). Assessing Leaf Area and Canopy Biochemistry of Florida Pine Plantations Using Remote Sensing. In: Shimoda, H., Gholz, H.L., Nakane, K. (eds) The Use of Remote Sensing in the Modeling of Forest Productivity. Forestry Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5446-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5446-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6290-9

  • Online ISBN: 978-94-011-5446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics