Skip to main content

The Role of Histone H1 in Chromatin Condensation and Transcriptional Repression

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 298 Accesses

Abstract

Linker histones are a major determinant of chromatin condensation. Wediscuss here the nature and position of the interaction of the globular domain of histone H5 with the core nucleosome and the relevance of this positioning to chromatin structure and the regulation of transcription of the Xenopus borealis 5S rRNA genes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Travers, A. (1999) Towards a higher order structure for chromatin - the location of the linker histone in the nucleosome. Trends Biochem. Sei, in press.

    Google Scholar 

  2. Simpson, R.T. (1978) Structure of the chromatosome, a chromatin particle containing 160 bp of DNA and all histones. Biochemistry 17 5524–5531.

    Article  PubMed  CAS  Google Scholar 

  3. Graziano, V., Gerchmann, S.E., Schneider, D.K. and Ramakrishnan, V. (1994) Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368 351–354.

    Article  PubMed  CAS  Google Scholar 

  4. Crane-Robinson, C. (1997) Where is the globular domain of linker histone located on the nucleosome? Trends Biochem. Sci 2275-77

    Article  PubMed  CAS  Google Scholar 

  5. Thoma, F., Köller, T. and Klug, A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructure of chromatin. J. Cell Biol 83 403

    Article  PubMed  CAS  Google Scholar 

  6. Bednar, J., Horowitz, R.A., Dubochet, J. and Woodcock, C.L. (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J. Cell. Biol 131 1365–1376.

    Article  PubMed  CAS  Google Scholar 

  7. Ramakrishnan, V., Finch, J.T., Graziano, V., Lee, P.L. and Sweet, R.M. (1993) Crystal structure of the globular domain of histone H5 and its implications for nucleosome binding. Nature 362 219–223.

    Article  PubMed  CAS  Google Scholar 

  8. Cerf, C., Lippens, G., Ramakrishnan, V., Muyldermans, S., Segers, A., Wyns, L., Wodak, S.J. and Hallenga, K. (1994) Homo-and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure and comparison with the globular domain of histone H5. Biochemistry 33 11079–11086

    Article  PubMed  CAS  Google Scholar 

  9. Thomas, J.O., Rees, C. and Finch, J.T. (1992) Cooperative binding of the globular domains of histones H1 and 115 to DNA Nucl. Acids. Res 20 187–194.

    Article  PubMed  CAS  Google Scholar 

  10. Drayes, P.H., Lowary, P.T. and Widom, J. (1992) Cooperative binding of the globular domain of histone H5 to DNA. J. Mol. Biol 225 1105–1121.

    Article  Google Scholar 

  11. Goytisolo, F.A., Gerchman, S.E., Yu, X., Rees, C., Graziano, V., Ramakrishnan, V. and Thomas, J.O. (1996) Identification of two DNA-binding sites on the globular domain of histone H5. EMBO J 15 3421–3429.

    PubMed  CAS  Google Scholar 

  12. Zhou, Y.-B., Gerchman, S.E., Ramakrishnan, V., Travers, A. and Muyldermans, S. (1998) Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395, 402–405.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas, J.O. and Wilson, C.M. (1986) Selective radiolabeling and identification of a strong nucleosome binding site on the globular domain of histone H5. EMBO J 5 3531–3537.

    PubMed  CAS  Google Scholar 

  14. An, W., Leuba, S.H., van Holde, K. and Zlatanova, J. (1998). Linker histone protects DNA on only one side of the core particle, in a sequence-dependent manner. Proc. Natl. Acad. Sci. USA, 95 3396–3401.

    Article  PubMed  CAS  Google Scholar 

  15. Wong, J., Li, Q., Levi, B.-Z., Shi, Y.-B. and Wolfe, A.P. (1998) Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. EMBO J 17 520–534.

    Article  PubMed  CAS  Google Scholar 

  16. Satchwell, S.C. and Travers, A.A. (1989) Asymmetry and polarity of nucleosomes in chicken erythrocyte chromatin. EMBO J 8 229–238.

    PubMed  CAS  Google Scholar 

  17. Muyldermans, S.V. and Travers, A.A. (1994) DNA sequence organization in chromatosomes. J. Mol. Biol 235 855–870.

    Article  PubMed  CAS  Google Scholar 

  18. Travers, A.A. and Muyldermans, S.V. (1996) A DNA sequence for positioning chromatosomes. J. Mol. Biol 257 486–491.

    Article  PubMed  CAS  Google Scholar 

  19. Allan, J., Crane-Robinson, C. and Aviles, F.X. (1980). The structure of histone H1 and its location in chromatin. Nature 288 675–679.

    Article  PubMed  CAS  Google Scholar 

  20. Pruss, D., Bartholomew, B., Persinger, J., Hayes, J., Arents, G., Moudrianakis, M.N. and Wolffe, A.P. (1996) An asymmetric model for the nucleosome: A binding site for linker histones inside the DNA gyres. Science 274 614–617.

    Article  PubMed  CAS  Google Scholar 

  21. Hayes, J.J. (1996) Site-directed cleavage of DNA by a linker histone-Fe(II) EDTA conjugate: Localization of a globular domain binding site within a nucleosome. Biochemistry 35 11931–11937

    Article  PubMed  CAS  Google Scholar 

  22. Hayes, J.J., and Wolffe, A.P. (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc. Natl. Acad. Sci. USA 90 6415–6419.

    Article  PubMed  CAS  Google Scholar 

  23. Hamiche, A., Schultz, P., Ramakrishnan V., Oudet, P. and Prunell, A. (1996) Linker histone dependent DNA structure in mononucleosomes. J. Mol. Biol 257 30–42.

    Article  PubMed  CAS  Google Scholar 

  24. Lee, K.M. and Hayes, J.J. (1998) Linker DNA and Hl-dependent reorganization of histone-DNA interactions within the nucleosome. Biochemistry 37 8622–8628.

    Article  PubMed  CAS  Google Scholar 

  25. An, W., van Holde, K. and Zlatanova, J. (1998) Linker histone protection of chromatosomes reconstituted on 5S rDNA from Xenopus borealis: a reinvestigation. Nucl. Acids Res 26 4042–4047.

    Article  PubMed  CAS  Google Scholar 

  26. Panetta, G., Buttinelli, M., Flaus, A., Richmond, T.J. and Rhodes, D. (1998) Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression. J. Mol. Biol 282 683–697.

    Article  PubMed  CAS  Google Scholar 

  27. Flaus, A., Luger, K., Tan, S. and Richmond, T.J. (1996) Mapping nucleosome position at single base-pair resolution by using site-directed hydroxyl radicals. Proc Natl Acad Sci USA, 93 1370–1375.

    Article  PubMed  CAS  Google Scholar 

  28. Drew, H.R. and Calladine, C.R. (1987) Sequence-specific positioning of core histones on an 860 base-pair DNA. Experiment and theory. J Mol Biol, 195 143–173.

    Article  PubMed  CAS  Google Scholar 

  29. Dong, F., Hansen, J.C. and van Holde, K.E. (1990) DNA and protein determinants of nucleosome positioning on sea urchin 5SrRNA gene sequences in vitro. Proc. Natl. Acad. Sci. USA, 87 5724–5728.

    Article  CAS  Google Scholar 

  30. Pruss, D. and Wolffe, A.P. (1993) Histone-DNA contacts in a nucleosome core containing a 5S rRNA gene.

    Google Scholar 

  31. Sera, T. and Wolfe, A.P. (1998) Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol. Cell Biol 18 3668–3680.

    PubMed  CAS  Google Scholar 

  32. Howe, L. and Ausió, J. (1998) Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes. Mol. Cell. Biol 18 1156–1162.

    PubMed  CAS  Google Scholar 

  33. Kruger, W., Peterson, C.L., Sil, A., Coburn, C., Arents, G., Moudrianakis, E.N. and Herskowitz, I. (1995) Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes. Dev 9 2770–2779.

    Article  PubMed  CAS  Google Scholar 

  34. Luger, K., Rechesteiner, T.J, Flaus, A.J, Waye, M.M. and Richmond, T.J. (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol 272 301–311

    Article  PubMed  CAS  Google Scholar 

  35. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D. L. and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 251–260.

    Article  PubMed  CAS  Google Scholar 

  36. Buttinelli, M., Di Mauro, E. and Negri, R. (1993) Multiple nucleosome positioning with unique rotational setting for the Saccharomyces cerevisiae 5S rRNA gene in vitro and in vivo. Proc Natl Acad Sci USA, 90 9315–9319.

    Article  CAS  Google Scholar 

  37. Laybourn, P.J. and Kadonaga, J.T. (1991) Role ofnucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II Science, 254 238–245.

    Article  PubMed  CAS  Google Scholar 

  38. Juan, L.J., Utley, R.T., Vignali, M., Bohm, L. and Workman, J.L. (1997) Hl-mediated repression of transcription factor binding to a stably positioned nucleosome. J Biol Chem, 272 3635–3640.

    Article  PubMed  CAS  Google Scholar 

  39. Wormington, W.M. and Brown, D.D. (1983) Onset of 5 S RNA gene regulation during Xenopus embryogenesis. Dev Biol, 99 248–257.

    Article  PubMed  CAS  Google Scholar 

  40. Peterson, R.C., Doering, J.L. and Brown, D.D. (1980) Characterization of two Xenopus somatic 55 DNAs and one minor oocyte-specific 5S DNA. Cell, 20 131–141.

    Article  PubMed  CAS  Google Scholar 

  41. Engelke, D.R., Ng, S.Y., Shastry, B.S. and Roeder, R.G. (1980) Specific interaction of a purified transcription factor with an internal control region of 55 RNA genes. Cell, 19 717–728.

    Article  PubMed  CAS  Google Scholar 

  42. McConkey, G.A. and Bogenhagen, D.F. (1988) TFIIIA binds with equal affinity to somatic and major oocyte 55 RNA genes. Genes Dev, 2 205–214.

    Article  PubMed  CAS  Google Scholar 

  43. Schlissel, M.S. and Brown, D.D. (1984) The transcriptional regulation of Xenopus 5S RNA genes in chromatin: the roles of active stable transcription complexes and histone Hl. Cell, 37 903–913.

    Article  PubMed  CAS  Google Scholar 

  44. Wolffe, A.P. and Brown, D.D. (1988) Developmental regulation of two 5S ribosomal RNA genes. Science, 241 1626–1632.

    Article  PubMed  CAS  Google Scholar 

  45. Seidel, C.W. and Peck, L.J. (1992) Kinetic control of 5 S RNA gene transcription. J Mol Biol, 227 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  46. Pelham, H.R., Wormington, W.M. and Brown, D.D. (1981) Related 5S RNA transcription factors in Xenopus oocytes and somatic cells. Proc Natl Acad Sci USA, 781760–1764.

    Article  PubMed  CAS  Google Scholar 

  47. Shastry, B.S., Honda, B.M. and Roeder, R.G. (1984) Altered levels of a 5 S gene-specific transcription factor (TFIIIA) during oogenesis and embryonic development of Xenopus laevis. JBiol Chem, 259 11373–11382.

    CAS  Google Scholar 

  48. Bouvet, P., Dimitrov, S. and Wolfe, A.P. (1994) Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H 1. Genes Dev, 8 1147–1159.

    Article  PubMed  CAS  Google Scholar 

  49. Kandolf, H. (1994) The HIA histone variant is an in vivo repressor of oocyte-type 5S gene transcription in Xenopus laevis embryos. Proc Natl Acad Sci US A, 91 7257–7261.

    Article  CAS  Google Scholar 

  50. Flynn, J.M. and Woodland, H.R. (1980) The synthesis of histone H1 during early amphibian development. Dev Biol, 75 222–230.

    Article  PubMed  CAS  Google Scholar 

  51. Korn, L.J. and Gurdon, J.B. (1981) The reactivation of developmentally inert 5S genes in somatic nuclei injected into Xenopus oocytes. Nature, 289 461–465.

    Article  PubMed  CAS  Google Scholar 

  52. Gottesfeld, J.M. and Bloomer, L.S. (1980) Nonrandom alignment of nucleosomes on 5S RNA genes of X. laevis. Cell, 21 751–760.

    Article  PubMed  CAS  Google Scholar 

  53. Young, D. and Carroll, D. (1983) Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis. Mol Cell Biol, 3 720–730.

    CAS  Google Scholar 

  54. Chipev, C.C. and Wolffe, A.P. (1992) Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo. Mol Cell Biol, 12 45–55.

    CAS  Google Scholar 

  55. Rhodes, D. (1985) Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J, 4, 3473–3482.

    PubMed  CAS  Google Scholar 

  56. Finch, J.T. and Klug, A. (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA, 73, 1897–1901.

    Article  PubMed  CAS  Google Scholar 

  57. Korn, L.J. and Brown, D.D. (1978) Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eucaryotic genes. Cell, 15, 1145–1156.

    Article  PubMed  CAS  Google Scholar 

  58. Tomaszewski, R. and Jerzmanowski, A. (1997) The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone HI-mediated chromatin reorganization in vitro. Nucl. Acids Res 25, 458–466.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buttinelli, M., Panetta, G., Rhodes, D., Travers, A. (1999). The Role of Histone H1 in Chromatin Condensation and Transcriptional Repression. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics