Skip to main content

Histone-DNA Contacts in Structure/Function Relationships of Nucleosomes as Revealed by Crosslinking

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 298 Accesses

Abstract

We describe studies of histone-DNA contacts in the nucleosome using the method of covalent zero length protein-DNA crosslinking. These studies show that in intact nuclei isolated from different sources the linear sequential arrangement of histone-DNA contacts in the nucleosomal core is essentially the same. However, the relative strength of certain contacts varies and correlates with the level of chromatin activity and condensation. These altered contacts are located in the sharply bent regions of the nucleosomal DNA and are supposed to be sensetive to the structural changes which may occur during nucleosome functions. Studies of the mechanism of these alterations revealed that the difference in strength of these contacts is attributed to the different conformational state of the nucleosomal core and is caused by the stretching of the nucleosomal DNA upon chromatin decondensation during its activation. Histone terminal domains may be involved in this process through posttranslational modifications affecting chromatin condensation. The described localization of the histone H2A C-terminal domain in the nucleosome by crosslinking demonstrates the ability of this methodology to determine the location of histone terminal domains and thereby elucidate their role in nucleosome function. The results of the described experiments suggest that chromatin decondensation may alter the nucleosomal DNA conformation and affect the histone-DNA contacts resulting in a structural transition that may play a role in rendering the nucleosome competent for transcription and/or replication

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saitoh, Y., Laemmli, U. K. (1993) From the chromosomal loops and the scaffold to the classic bands of metaphase chromosomes, Cold Spring Harbor Symposia on Quantitative Biology 58 755–765.

    Article  PubMed  CAS  Google Scholar 

  2. Bradbury, E. M. (1992) Reversible histone modifications and the chromosome cell cycle, Bioessays 14 9–16.

    Article  PubMed  CAS  Google Scholar 

  3. Van Holde, K. (1988) Chromatin, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo.

    Google Scholar 

  4. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N. (1991) The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix, Proc. Natl. Acad. Sci. USA 88 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  5. Suau, P., Kneale, G. G., Braddock, G. W., Baldwin, J. P., and Bradbury, E. M. (1977) A low resolution model for the chromatin core particle by neutron scattering, Nucl. Acids Res 4 3769–3786.

    Article  PubMed  CAS  Google Scholar 

  6. Finch, J. T., Brown, R. S., Rhoddes, D., Richmond, T., Rushton, B., Lutter, L. C., and Klug, A. (1981) X-ray-diffraction study of a new crystal form of the nucleosome core showing higher resolution, J. Mol. Biol 145 757–769.

    Article  PubMed  CAS  Google Scholar 

  7. Bentley, C. A., Finch, J. T., and Lewit-Bentley, A. (1981) Neutron diffraction studies on crystals of nucleosome cores using contrast variation, J. Mol. Biol 145 771–784.

    Article  PubMed  CAS  Google Scholar 

  8. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D., and Klug, A.(1984) Structure of the nucleosome core particle at 7 A resolution, Nature 311 532–537.

    Article  PubMed  CAS  Google Scholar 

  9. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature 389 251–260.

    Article  PubMed  CAS  Google Scholar 

  10. Wood, M. J., Yau, P.M., Imai, B. S., Goldberg, M. W., Lambert, S. J., Fowler, A. L., Baldwin, J. P., Godfrey, J., Moudrianakis, E. N., Ibel, K., May, R. P., Koch, M., and Bradbury, E. M. (1991) Neutron and x-ray scatter studies of the histone octamer and amino and carboxyl domain trimmed octamers, J. Biol. Chem 266 5696–5702.

    PubMed  CAS  Google Scholar 

  11. Schroth, G. P., Yau, P. M., Imai, B. S., Gatewood, J. M., and Bradbury, E. M. (1990) A NMR study of mobility in the histone octamer, FEBSLett 268 117–120.

    Article  CAS  Google Scholar 

  12. Levina, E. S., Bavykin, S. G., Shick, V. V., and Mirzabekov, A. D. (1981) The method of crosslinking histones to DNA partly depurinated at neutral pH, Anal. Biochem 110 93–101.

    Article  PubMed  CAS  Google Scholar 

  13. Usachenko, S. I., Gavin, I. M., and Bavykin, S. G. (1996) Alterations in nucleosome core structure in linker histone-depleted chromatin, J. Biol. Chem 271 3831–3836.

    Article  PubMed  CAS  Google Scholar 

  14. Gavin, I. M., Usachenko, S. I., and Bavykin, S. G. (1998) Nucleosome structural transition during chromatin unfolding is caused by conformational changes in nucleosomal DNA, J. Biol. Chem 273 2429–2434.

    Article  PubMed  CAS  Google Scholar 

  15. Karpov, V. L., Preobrazhenskaya, O. V., and Mirzabekov, A. D. (1984) Chromatin structure of hsp 70 genes, activated by heat shock: selective removal of histones from the coding region and their absence from the 5’ region, Cell 36 423–431.

    Article  PubMed  CAS  Google Scholar 

  16. Bavykin, S., Srebreva, L., Banchev, T., Tsanev, R., Zlatanova, J., and Mirzabekov, A. (1993) Histone HI deposition and histone-DNA interactions in replicating chromatin, Proc. Natl. Acad. Sci. USA 90 3918–3922.

    Article  PubMed  CAS  Google Scholar 

  17. Bavykin, S. G., Usachenko, S. I., Lishanskaya, A. I., Shick, V. V., Belyaysky, A. V., Undritsov, I. M., Strokov, A. A., Zalenskaya, I. A., and Mirzabekov, A. D. (1985) Primary organization of nucleosomal core particles is invariable in repressed and active nuclei from animal, plant and yeast cells, Nucl. Acids Res 13, 3439–3459.

    Article  PubMed  CAS  Google Scholar 

  18. Nacheva, G. A., Guschin, D. Y., Preobrazhenskaya, O. V., Karpov, V. L., Ebralidse, K. K. and Mirzabekov, A. D. (1989) Change in the pattern of histone binding to DNA upon transcriptional activation, Cell 58 27–36.

    Article  PubMed  CAS  Google Scholar 

  19. Shick, V. V., Belyaysky, A. V., Bavykin, S. G., and Mirzabekov, A. D. (1980) Primary organization of the nucleosome core particles, J. Mol. Biol 139 491–517.

    Article  PubMed  CAS  Google Scholar 

  20. Belyaysky, A. V., Bavykin, S. G., Goguadze, E. G., and Mirzabekov, A. D. (1980) Primary organization of nucleosomes containing all five histones and DNA 175 and 165 base-pairs long, J Mol. Biol 139 519–536.

    Article  Google Scholar 

  21. Strickland, M., Strickland, W. N., Brandt, W. F., Von Holt, C., Wittmann-Liebold, B., Lehmann, A. (1978) The complete amino-acid sequence of histone H2B from sperm of the sea urchin Parechinus angulosus, Eur. J. Biochem 89 443–452.

    Article  PubMed  CAS  Google Scholar 

  22. Spiker, S. (1975) An evolutionary comparison of plant histones, Biochem. Biophys. Acta 400 461–467.

    Article  PubMed  CAS  Google Scholar 

  23. Spiker, S., Key, J. L., and Wakim, B. (1976) Identification and fractionation of plant histones, Arch. Biochem. Biophys 176 510–518.

    Article  PubMed  CAS  Google Scholar 

  24. Moss, T., Stephens, R. M., Crane-Robinson, C., and Bradbury, E. M. (1977) A nucleosome-like structure containing DNA and the arginine-rich histones H3, H4, Nucl. Acids Res 4 2477–2485.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas, J. O., and Oudet, P. (1979) Complexes of the arginine-rich histone tetramer (H3)2(H4)2 with negatively supercoiled DNA: electron microscopy and chemical cross-linking, Nucl. Acids Res 7 611–623.

    Article  PubMed  CAS  Google Scholar 

  26. Poccia, D. L., and Green, G. R. (1992) Packaging and unpackaging the sea urchin sperm genome, Trends Biochem 17 223–227.

    Article  CAS  Google Scholar 

  27. Paranjape, S. M., Kamakaka, R. T., and Kadonaga, J. T. (1994) Role of Chromatin Structure in the Regulation of Transcription by RNA Polymerase II, Annu. Rev. Biochem 63 265–297.

    Article  PubMed  CAS  Google Scholar 

  28. Lohr, D. and Hereford, L. (1979) Yeast chromatin is uniformly digested by DNase I, Proc. Natl. Acad. Sci. USA 76 4285–4288.

    Article  PubMed  CAS  Google Scholar 

  29. Hereford, L. M. and Rosbash, M. (1977) Number and distribution of polyadenylated RNA sequences in yeast, Cell 10, 453–462.

    Article  PubMed  CAS  Google Scholar 

  30. Grunstein, M. (1990) Nucleosomes: Regulators of Transcription, Trends Gen 6 395–400.

    Article  CAS  Google Scholar 

  31. Csordas, A. (1990) On the biological role of histone acetylation, Biochem. J 265 23–38.

    PubMed  CAS  Google Scholar 

  32. Davie, J. R. and Hendzel, M. J. (1994) Multiple functions of dynamic histone acetylation, J. Cell Biochem 55 98–105.

    Article  PubMed  CAS  Google Scholar 

  33. Turner, B. M. (1991) Histone acetylation and control of gene expression, J. Cell Sci 99 13–20.

    PubMed  CAS  Google Scholar 

  34. Loidl, P. (1994) Histone acetylation: facts and questions, Chromosoma 103 441–449.

    Article  PubMed  CAS  Google Scholar 

  35. Ebralidse, K. K., Hebbes, T. R., Clayton, A. L., Thorne, A. W., and Crane-Robinson, C. (1993) Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking, Nucl. Acids Res 21 4734–4738.

    Article  PubMed  CAS  Google Scholar 

  36. Usachenko, S. I., Bavykin, S. G., Gavin, I. M., and Bradbury, E. M. (1994) Rearrangement of the histone H2A C-terminal domain in the nucleosome, Proc. Natl. Acad. Sci. USA 91 6845–6849.

    Article  PubMed  CAS  Google Scholar 

  37. Ebralidse, K. K., Grachev, S. A., and Mirzabekov, A. D. (1988) A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA, Nature 331 365–367.

    Article  PubMed  CAS  Google Scholar 

  38. Usachenko, S. I and Bradbury, E. M., manuscript in preparation.

    Google Scholar 

  39. Hong, L., Schroth, G. P., Matthews, H. R., Yau, P., and Bradbury, E. M. (1993) Studies of the DNA binding properties of histone H4 amino terminus, J. Biol. Chem 268 305–314.

    PubMed  CAS  Google Scholar 

  40. Van Holde, K. E., and Zlatanova, J. (1996) What determines the folding of the chromatin fiber?, Proc. Natl. Acad. Sci. USA 93 10548–10555.

    Article  PubMed  Google Scholar 

  41. Ridsdale, J. A., Hendzel, M. J., Delcuve, G. P., and Davie, J. R. (1990) Histone acetylation alters the capacity of the HI histones to condense transcriptionally active/competent chromatin, J. Biol. Chem 265 5150–5156.

    PubMed  CAS  Google Scholar 

  42. Perry, C. A. and Annunziato, A. T. (1991) Histone acetylation reduces Hl-mediated nucleosome interactions during chromatin assembly, Exp. Cell Res 196 337–345.

    Article  PubMed  CAS  Google Scholar 

  43. Zlatanova, J., and Van Holde, K. (1992) Histone H1 and transcription: still an enigma?, J. Cell Sci 103 889–895.

    PubMed  CAS  Google Scholar 

  44. Thoma, F., Koller, Th., and Klug, A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J. Cell Biol 83 403–427.

    Article  PubMed  CAS  Google Scholar 

  45. Widom, J. (1989) Toward a unified model of chromatin folding, Annu. Rev. Biophys. Chem 18 365–395.

    Article  CAS  Google Scholar 

  46. Clark, D. J., and Kimura, T. (1990) Electrostatic mechanism of chromatin folding, J. Mol. Biol 211 883–896.

    Article  PubMed  CAS  Google Scholar 

  47. Goulet, I., Zivanovic, Y., Prunell, A., and Revet, B. (1988) Chromatin reconstitution on small DNA rings, J. Mol. Biol 200 253–266.

    Article  PubMed  CAS  Google Scholar 

  48. Zivanovic, Y., Duban-Goulet, I., Schultz, P., Stofer, E., Oudet, P., and Prunell, A. (1990) Chromatin reconstituted on small DNA rings. Histone H5 dependence of DNA supercoiling in the nucleosome, J. Mol. Biol 214 479–495.

    Article  PubMed  CAS  Google Scholar 

  49. Bednar, J., Horowitz, R. A., Dubochet, J., and Woodcock, C. L. (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy, J. Cell Biol 131 1365–1376.

    Article  PubMed  CAS  Google Scholar 

  50. Hamiche, A., Schultz, P., Ramakrishnan, V., Oudet, P., and Prunell, A. (1996) Linker histone-dependent DNA structure in liniar mononucleosomes, J. Mol. Biol 257 30–42.

    Article  PubMed  CAS  Google Scholar 

  51. Manning, G. S. (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys 11 179–246.

    Article  PubMed  CAS  Google Scholar 

  52. Marky, N. L., and Manning, G. S. (1991) The elastic resilience of DNA can induce allor-none structural transitions in the nucleosome core particle, Biopolymers 31 1543–1557.

    Article  PubMed  CAS  Google Scholar 

  53. Garcia-Ramirez, M., Dong, F., and Ausio, J. (1992) Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1, J. Biol. Chem 267 19587–19595.

    PubMed  CAS  Google Scholar 

  54. Allan, J., Harborne, N., Rau, D. C., Gould, H. (1982) Participation of core histone “tails” in the stabilization of the chromatin solenoid, J Cell Biol 93 285–297.

    Article  PubMed  CAS  Google Scholar 

  55. Bohm, L., Crane-Robinson, C., and Sautiere, P. (1980) Proteolytic digestion studies of chromatin core-histone structure, Eur. J. Biochem 106 525–530.

    Article  PubMed  CAS  Google Scholar 

  56. Dumuis-Kervabon, A., Encontre, I., Etienne, G., Jauregui-Adell, J., Mery, J., Mesnier, D., and Parello, J. (1986) A chromatin core particle obtained by selective cleavage of histones by clostripain, EMBO J 5 1735–1742.

    PubMed  CAS  Google Scholar 

  57. Pehrson, J. R. (1989) Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin, Proc. Natl. Acad. Sci. USA 86 9149–9153.

    Article  PubMed  CAS  Google Scholar 

  58. Guschin, D. Y., Ebralidse, K. K. and Mirzabekov, A. D. (1991) Peptidic points of H2A, H2B - DNA interactions in the nucleosome core particles, Mol. Biol. (USSR) 25 1400–1411.

    Google Scholar 

  59. Strickland, W. N., Strickland, M. S., de Groot, P. C., and von Holt, C. (1980) The primary structure of histone H2A from the sperm cell of the sea urchin Parechinus angulosus, Eur. J. Biochem 109 151–158.

    Article  PubMed  CAS  Google Scholar 

  60. Rodrigues, J. de A., Brandt, W. F., and von Holt, C. (1985) The amino acid sequence of wheat histone H2A(1). A core histone with a C-terminal extention, Eur. J. Biochem 150 499–505.

    Article  CAS  Google Scholar 

  61. Choe, J., Kolodrubetz, D., and Grunstein, M. (1982) The two yeast histone H2A genes encode similar protein subtypes, Proc. Nad. Acad. Sci. USA 79 1484–1487.

    Article  CAS  Google Scholar 

  62. Zhong, R., Roeder, R. G., Heintz, N. (1983) The primary structure and expression of four cloned human histone genes, Nucl. Acids Res 11 7409–7425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Usachenko, S.I., Bradbury, E.M. (1999). Histone-DNA Contacts in Structure/Function Relationships of Nucleosomes as Revealed by Crosslinking. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics