Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 71))

Abstract

Catalysis in RNA is intimately connected to the folding. The small nucleolytic ribozymes function by a nucleophilic attack of the 2’-oxygen on the 3’-phosphate, in an SN2 mechanism. This requires an alignment of the 2’-O, 3’-P and 5’-O, that does not occur in normal A-form RNA. It is therefore likely that structural distortion plays a major role in the enhancement of the reaction rate, facilitating the trajectory into the in-line transition state. Given the polyelectrolyte nature of nucleic acids, metal ions are critical to folding processes in RNA. We have shown that two small nucleolytic ribozymes, the hammerhead and hairpin ribozymes, undergo metal ion-induced folding processes. The hammerhead ribozyme folds in two stages, each of which is induced by the binding of a single structural ion. The first corresponds to the formation of the ribozyme scaffold, while the second is the formation of the catalytic core of the ribozyme. By contrast, the hairpin ribozyme undergoes a single folding event induced by the binding of at least two metal ions, and involves the close interaction between two internal loops to form the active ribozyme

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gesteland, R. F. and Atkins, J. F., Eds The RNA World, Cold Spring Harbor Press, New York. Vol pp. 1–630.

    Google Scholar 

  2. Eckstein, F. and Lilley, D. M. J., Eds Catalytic RNA, Nucleic Acids & Molec. Biol, Vol 10 Springer-Verlag, Berlin. pp. 1–417.

    Google Scholar 

  3. Cech, T. R. (1987). The chemistry of self-splicing RNA and RNA enzymes. Science 236 1532–1539.

    Article  PubMed  CAS  Google Scholar 

  4. Pyle, A. M. (1996). Catalytic reaction mechanisms and structural features of group II intron ribozymes, In Catalytic RNA, Eckstein, F. and Lilley, D. M. J., Eds, Nucleic Acids & Molec. Biol: Vol 10 Springer Verlag, Berlin, 75–105.

    Google Scholar 

  5. Pace, N. R. and Smith, D. (1990). Ribonuclease P: function and variation. J. Biol. Chem 265 3587–3590.

    PubMed  CAS  Google Scholar 

  6. Pace, N. R. and Brown, J. W. (1995). Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J. Bacteriol 177 1919–1928.

    PubMed  CAS  Google Scholar 

  7. Forster, A. C. and Symons, R. H. (1987). Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49 211–220.

    Article  PubMed  CAS  Google Scholar 

  8. Hazeloff, J. P. and Gerlach, W. L. (1988). Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334 585–591.

    Article  Google Scholar 

  9. Epstein, L. M. and Gall, J. G. (1987). Self-cleaving transcripts of satellite DNA from the newt. Cell 48 535–543.

    Article  PubMed  CAS  Google Scholar 

  10. Feldstein, P. A., Buzayan, J. M. and Bruening, G. (1989). Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 82 53–61.

    Article  PubMed  CAS  Google Scholar 

  11. Hampel, A. and Tritz, R. (1989). RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry 28 4929–4933.

    Article  PubMed  CAS  Google Scholar 

  12. Sharmeen, L., Kuo, M. Y., Dinter-Gottlieb, G. and Taylor, J. (1988). Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J. Virol 62 2674–2679.

    PubMed  CAS  Google Scholar 

  13. Piccirilli, J. A., McConnell, T. S., Zaug, A. J., Noller, H. F. and Cech, T. R. (1992). Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256 1420–1424.

    Article  PubMed  CAS  Google Scholar 

  14. Hutchins, C. J., Rathjen, P. D., Forster, A. C. and Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14 3627–3640.

    Article  PubMed  CAS  Google Scholar 

  15. Uhlenbeck, U. C. (1987). A small catalytic oligoribonucleotide. Nature 328 596–600.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, R. S., Dewan, J. C. and Klug, A. (1985). Crystallographic and biochemical investigation of the lead (II)-catalysed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24 4785–4801.

    Article  PubMed  CAS  Google Scholar 

  17. Koizumi, M. and Ohtsuka, E. (1991). Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30 5145–5150.

    Article  PubMed  CAS  Google Scholar 

  18. Pley, H. W., Flaherty, K. M. and McKay, D. B. (1994). Three-dimensional structure of a hammerhead ribozyme. Nature 372 68–74.

    Article  PubMed  CAS  Google Scholar 

  19. Scott, W. G., Finch, J. T. and Klug, A. (1995). The crystal structure of an all-RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 81 991–1002.

    Article  PubMed  CAS  Google Scholar 

  20. Slim, G. and Gait, M. J. (1991). Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res 19 1183–1188.

    Article  PubMed  CAS  Google Scholar 

  21. Dahm, S. C. and Uhlenbeck, O. C. (1991). Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30 9464–9469.

    Article  PubMed  CAS  Google Scholar 

  22. Dahm, S. C., Derrick, W. B. and Uhlenbeck, O. C. (1993). Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32 13040–13045.

    Article  PubMed  CAS  Google Scholar 

  23. Hampel, A. and Cowan, J. A. (1997). A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem. & Biol 4 513–517.

    Article  CAS  Google Scholar 

  24. Nesbitt, S., Hegg, L. A. and Fedor, M. J. (1997). An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem. & Biol 4, 619–630.

    Article  CAS  Google Scholar 

  25. Young, K. J., Gill, F. and Grasby, J.A. (1997). Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res 25 3760–3766.

    Article  PubMed  CAS  Google Scholar 

  26. Lilley, D. M. J., Clegg, R. M., Diekmann, S., Seeman, N. C., von Kitzing, E. and Hagerman, P. (1995). Nomenclature committee of the International Union of Biochemistry: A nomenclature of junctions and branchpoints in nucleic acids. Recommendations 1994. Eur. J. Biochem 230 1–2.

    Article  PubMed  CAS  Google Scholar 

  27. Ruffner, D. E., Stormo, G. D. and Uhlenbeck, O. C. (1990). Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29 10695–10702.

    Article  PubMed  CAS  Google Scholar 

  28. Olsen, D. B., Benseler, F., Aurup, H., Pieken, W. A. and Eckstein, F. (1991). Study of a hammerhead ribozyme containing 2’-modified adenosine residues. Biochemistry 30 9735–9741.

    Article  PubMed  CAS  Google Scholar 

  29. Williams, D. M., Pieken, W. A. and Eckstein, F. (1992). Function of specific 2’-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2’-modifications. Proc. Natl. Acad. Sci. USA 89 918–921.

    Article  PubMed  CAS  Google Scholar 

  30. Fu, D.-J. and McLaughlin, L. W. (1992). Importance of specific purine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme. Proc. Natl. Acad. Sci. USA 89 3985–3989.

    Article  PubMed  CAS  Google Scholar 

  31. Fu, D.-J. and McLaughlin, L. W. (1992). Importance of specific adenosine N7-nitrogens for efficient cleavage by a hammerhead ribozyme. A model for magnesium binding. Biochemistry 31 10941–10949.

    Article  PubMed  CAS  Google Scholar 

  32. Paolella, G., Sproat, B. S. and Lamond, A. I. (1992). Nuclease resistant ribozymes with high catalytic activity. EMBO J 11 1913–1919.

    PubMed  CAS  Google Scholar 

  33. Yang, J.-H., Usman, N., Chartrand, P. and Cedergren, R. (1992). Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31 5005–5009.

    Article  PubMed  CAS  Google Scholar 

  34. Fu, D. J., Rajur, S. B. and McLaughlin, L. W. (1993). Importance of specific guanosine N7-nitrogens and purine amino groups for efficient cleavage by a hammerhead ribozyme. Biochemistry 32 10629–10637.

    Article  PubMed  CAS  Google Scholar 

  35. Tuschl, T., Ng, M. M. P., Pieken, W., Benseler, F. and Eckstein, F. (1993). Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32 11658–11668.

    Article  PubMed  CAS  Google Scholar 

  36. Seela, F., Mersmann, K., Grasby, J. A. and Gait, M. J. (1993). 7-Deazaadenosine - oligoribonucleotide building block synthesis and autocatalytic hydrolysis of base-modified hammerhead ribozymes. HeIv. Chim Acta 76 1809–1820.

    Article  CAS  Google Scholar 

  37. Grasby, J. A., Butler, P. J. G. and Gait, M. J. (1993). The synthesis of oligoribonucleotides containing 06-methylguanosine - the role of conserved guanosine residues in hammerhead ribozyme cleavage. Nucleic Acids Res 21 4444–4450.

    Article  PubMed  CAS  Google Scholar 

  38. Bassi, G., Mollegaard, N. E., Murchie, A. I. H., von Kitzing, E. and Lilley, D. M. J. (1995). Ionic interactions and the global conformations of the hammerhead ribozyme. Nature Struct. Biol 2 45–55.

    Article  PubMed  CAS  Google Scholar 

  39. Tuschl, T., Gohlke, C., Jovin, T. M., Westhof, E. and Eckstein, F. (1994). A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266 785–789.

    Article  PubMed  CAS  Google Scholar 

  40. Amiri, K. M. A. and Hagerman, P. J. (1994). Global conformation of a self-cleaving hammerhead RNA. Biochemistry 33 13172–13177.

    Article  PubMed  CAS  Google Scholar 

  41. Bassi, G. S., Murchie, A. I. H., Walter, F., Clegg, R. M. and Lilley, D. M. J. (1997). Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. EMBO J 16 7481–7489.

    Article  PubMed  CAS  Google Scholar 

  42. Ruffner, D. E. and Uhlenbeck, O. C. (1990). Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res 18 6025–6029.

    Article  PubMed  CAS  Google Scholar 

  43. Scott, W. G., Murray, J. B. Arnold, J. R. P., Stoddard, B. L. and Klug, A. (1996). Capturing the structure of a catalytic RNA intermediate: The hammerhead ribozyme. Science 274 2065–2069.

    Article  Google Scholar 

  44. Knoll, R., Bald, R. and Fürste, J. P. (1997). Complete identification of nonbridging phosphate oxygens involved in hammerhead cleavage. RNA 3, 132–140.

    PubMed  CAS  Google Scholar 

  45. Feig, A. L., Scott, W. G. and Uhlenbeck, O. C. (1998). Inhibition of the hammerhead ribozyme cleavage reaction by site-specific binding of Tb(III). Science 279 81–84.

    Article  PubMed  CAS  Google Scholar 

  46. Buzayan, J. M., Gerlach, W. L. and Bruening, G. (1986). Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323 349–353.

    Article  CAS  Google Scholar 

  47. De Young, M. B., Siwkowski, A. M., Lian, Y. and Hampel, A. (1995). Catalytic properties of hairpin ribozymes derived from Chicory Yellow Mottle virus and Arabis Mosaic virus satellite RNAs. Biochemistry 34 15785–15791.

    Article  Google Scholar 

  48. van Tol, H., Buzayan, J. M. and Bruening, G. (1991). Evidence for spontaneous circle formation in the replication of the satellite RNA of tobacco ringspot virus. J. Virol 280 23–30.

    Google Scholar 

  49. Hegg, L. A. and Fedor, M. J. (1995). Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry 34 15813–15828.

    Article  PubMed  CAS  Google Scholar 

  50. Hampel, A., Tritz, R., Hicks, M. and Cruz, P. (1990). ‘Hairpin’ catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res 18 299–304.

    Article  PubMed  CAS  Google Scholar 

  51. Chowrira, B. M., Berzal-Herranz, A. and Burke, J. M. (1991). Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354 320–322.

    Article  PubMed  CAS  Google Scholar 

  52. Berzal-Herranz, A., Simpson, J., Chowrira, B. M., Butcher, S. E. and Burke, J.M. (1993). Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO. J 12 2567–2574.

    PubMed  CAS  Google Scholar 

  53. Anderson, P., Monforte, J., Tritz, R., Nesbitt, S., Hearst, J. and Hampel, A. (1994). Mutagenesis of the hairpin ribozyme. Nucleic Acids Res 22 1096–1100.

    Article  PubMed  CAS  Google Scholar 

  54. Siwkowski, A., Shippy, R. and Hampel, A. (1997). Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry 36 3930–3940.

    Article  PubMed  CAS  Google Scholar 

  55. Chowrira, B. M., Berzal-Herranz, A., Keller, C. F. and Burke, J. M. (1993). Four ribose 2’-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J. Biol. Chem 268 19458–19462.

    PubMed  CAS  Google Scholar 

  56. Grasby, J. A., Mersmann, K., Singh, M. and Gait, M. J. (1995). Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry 34 4068–4076.

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt, S., Beigelman, L., Karpeisky, A., Usman, N., Sorensen, U. S. and Gait, M. J. (1996). Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: Implications for secondary structure. Nucleic Acids Res 24 573–581.

    Article  PubMed  CAS  Google Scholar 

  58. Komatsu, Y., Koizumi, M., Nakamura, H. and Ohtsuka, E. (1994). Loop-size variation to probe a bent structure of a hairpin ribozyme. J. Amer. Chem. Soc 116 3692–3696.

    Article  CAS  Google Scholar 

  59. Butcher, S. E., Heckman, J. E. and Burke, J. M. (1995). Reconstitution of hairpin ribozyme activity following separation of functional domains. J. Biol. Chem 270 29648–29651.

    Article  PubMed  CAS  Google Scholar 

  60. Komatsu, Y., Kanzaki, I. and Ohtsuka, E. (1996). Enhanced folding of hairpin ribozymes with replaced domains. Biochemistry 35 9815–9820.

    Article  PubMed  CAS  Google Scholar 

  61. Komatsu, Y., Kanzaki, I., Shirai, M. and Ohtsuka, E. (1997). A new type of hairpin ribozyme consisting of three domains. Biochemistry 36 9935–9940.

    Article  PubMed  CAS  Google Scholar 

  62. Komatsu, Y., Shirai, M., Yamashita, S. and Ohtsuka, E. (1997). Construction of hairpin ribozymes with a three-way junction. Bioorg. Med. Chem 5 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  63. Shin, C., Choi, J. N., Sang, S. I., Song, J. T., Ahn, J.H., Lee, J. S. and Choi, Y. D. (1996). The loop B domain is physically separable from the loop A domain in the hairpin ribozyme. Nucleic Acids Res 24 2685–2689.

    Article  PubMed  CAS  Google Scholar 

  64. Earnshaw, D. J., Masquida, B., Müller, S., Sigurdsson, S. T., Eckstein, F., Westhof, E. and Gait, M. J. (1997). Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J. Molec. Biol 274 197–212.

    Article  PubMed  CAS  Google Scholar 

  65. Murchie, A. 1. H., Thomson, J. B., Walter, F. and Lilley, D.M. J. (1998). Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops Molecular Cell 1 873–881.

    Article  PubMed  CAS  Google Scholar 

  66. Duckett, D. R., Murchie, A. I. H. and Lilley, D. M. J. (1995). The global folding of four-way helical junctions in RNA, including that in U1 snRNA. Cell 83 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  67. Walter, F., Murchie, A. I. H., Duckett, D. R. and Lilley, D.M.J. (1998). Global structure of four-way RNA junctions studied using fluorescence resonance energy transfer. RNA 4 719–728.

    Article  PubMed  CAS  Google Scholar 

  68. Walter, N. G., Hampel, K. J., Brown, K. M. and Burke, J.M. (1998). Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J 17 2378–2391.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lilley, D.M.J. (1999). RNA Folding and Catalysis. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics