Skip to main content

The Skeletal Function of Non-Genic Nuclear DNA: New Evidence from Ancient Cell Chimaeras

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

Abstract

DNA can be divided functionally into three categories: (1) genes, which code for proteins or specify non-messenger RNAs; (2) semons, short specific sequences involved in the replication, segregation, recombination or specific attachments of chromosomes, or chromosome regions (e.g. loops or domains) or selfish genetic elements; (3) secondary DNA which does not function by means of specific sequences. Probably more than 90% of DNA in the biosphere is secondary DNA in the nuclei of plants and phytoplankton. The amount of genic DNA is related to the complexity of the organism, whereas the amount of secondary DNA increases proportionally with cell volume, not with complexity. This correlation is most simply explained by the skeletal DNA hypothesis, according to which nuclear DNA functions as the basic framework for the assembly of the nucleus and the total genomic DNA content functions (together with relatively invariant folding rules) in determining nuclear volumes. Balanced growth during the cell cycle requires that the cytonuclear ratio is basically constant irrespective of cell volume; thus nuclear volumes, and therefore the overall genome size, has to be evolutionarily adjusted to changing cell volumes for optimal function. Since bacteria, mitochondria, chloroplasts and viruses have no nuclear envelope, the skeletal DNA hypothesis simply explains why secondary DNA is essentially absent from them but present in large cell nuclei. Hitherto it has been difficult to refute the alternative hypothesis that nuclear secondary DNA accumulates merely by mutation pressure (whether “junk” or selfish DNA), and that selection for economy is not strong enough to eliminate it, whereas accumulation in mitochondria and plastids is prevented by intracellular replicative competition between their multiple genomes. New data that and nuclear genome sizes; mutation, though the essential physical basis for changes in genome size, does not directly determine it as is assumed by junk and selfish DNA theories — mutation pressure cannot explain the scaling laws

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, M.D. (1972) Nuclear DNA content and minimum generation time in plants. Proc. Roy. Soc. Lond. B 178, 259–275.

    Article  Google Scholar 

  2. Cavalier-Smith, T. (1985) Introduction: the evolutionary significance of genome size. in T. Cavalier-Smith (ed.), The Evolution of Genome Size Wiley, Chichester, pp. 1–36.

    Google Scholar 

  3. Cavalier-Smith, T. (1985) Cell volume and the evolution of eukaryotic genome size. in T. Cavalier-Smith (ed.), The Evolution of Genome Size Wiley, Chichester, pp. 105–184.

    Google Scholar 

  4. Gilson, P.R., Maier, U-G. and McFadden, G.I. (1997) Size isn’t everything: lessons in genetic miniaturisation from nucleomorphs. Curr. Opin. Genet. Develop. 7, 800–806.

    Article  CAS  Google Scholar 

  5. McFadden, G.l., Gilson, P.R., Douglas, S.E., Cavalier-Smith, T., Hofmann, C.J.B. and Maier, U-G. (1997) Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends in Genetics 13, 46–49.

    Article  PubMed  CAS  Google Scholar 

  6. Cavalier-Smith, T. (1995) Membrane heredity, symbiogenesis, and the multiple origins of algae. in R. Arai, M. Kato and Y. Doi (eds.). Biodiversity and Evolution The National Science Museum Foundation, Tokyo, pp.75–114.

    Google Scholar 

  7. Vickerman, K. and Preston, T.M. (1976) Comparative cell biology of the kinetoplastid flagellates. in W.H.R. Lumsden and D.A. Evans (eds.), Biology of Kinetoplastida Academic Press, New York, pp. 36–130.

    Google Scholar 

  8. Coleman, A.W. (1985) Diversity of plastid DNA configuration among classes of eukaryote algae. J. Phycol 21, 1–16.

    Article  Google Scholar 

  9. Cavalier-Smith, T. (1985). DNA replication and the evolution of genome size. in T. Cavalier-Smith (ed.), The Evolution of Genome Size Wiley, Chichester, pp. 211–251.

    Google Scholar 

  10. Palmer, J.D. and Delwiche, C.F. (1998) The origin and evolution of plastids and their genomes. in D.E. Soltis, P.S. Soltis and J.J. Doyle (eds.), Molecular Systematics of Plants II. Chapman-Hall, New York, in press.35. Huxley, J.S. (1972) Problems of Relative Growth 2nd ed. Dover, New York.

    Google Scholar 

  11. Turmel, M., Côté, V., Otis, C., Mercier, J.-P., Gray, M.W., Lonergan, K.M. and Lemieux, C. (1995) Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol. Biol. Evol 12, 533–545.

    PubMed  CAS  Google Scholar 

  12. Cavalier-Smith, T. (1985) Selfish DNA, intragenomic selection and genome size. in T. Cavalier-Smith (ed.), The Evolution of Genome Size Wiley, Chichester, pp. 253–265.

    Google Scholar 

  13. Cavalier-Smith, T. (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci 34, 247–278.

    PubMed  CAS  Google Scholar 

  14. Beaton, M.J. and Cavalier-Smith T. (1998) A general function for nuclear non-coding DNA revealed by genome size evolution in eukaryote-eukaryote chimaeras. Submitted.

    Google Scholar 

  15. Shuter, B.J., Thomas, J.E., Taylor, W.D. and Zimmerman, A.M. (1983) Phenotypic correlates of genomic DNA content in unicellular eukaryotes and other cells. Am. Nat 122,26–24.

    Article  CAS  Google Scholar 

  16. Cavalier-Smith, T. (1980) r-and K-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection, and cell cycle patterns. BioSystems 12, 43–59.

    Article  PubMed  CAS  Google Scholar 

  17. Cavalier-Smith, T. (1985) Eukaryote gene number, non-coding DNA and genome. in T. Cavalier-Smith (ed.), The Evolution of Genome Size Wiley, Chichester, pp. 69–103.

    Google Scholar 

  18. Hertwig, R. (1903) Über Korrelation von Zell-und Kerngrösse und ihre Bedeutung fir die geschechtliche Differenzierung und die Teilung der Zelle.Biol. Centralbl 23, 49–62.

    Google Scholar 

  19. Wilson, E.B. (1925) The Cell in Development and Heredity Macmillan, New York.

    Google Scholar 

  20. Trombetta, V.V. (1942) The cytonuclear ratio. Bot. Rev 8, 317–336.

    Article  Google Scholar 

  21. Cavalier-Smith, T. (1982) Skeletal DNA and the evolution of genome size. Ann. Rev. Biophys. Bioeng 11, 273–302.

    Article  CAS  Google Scholar 

  22. Cavalier-Smith, T. (1991) Coevolution of vertebrate genome, cell and nuclear sizes. in G. Ghiara et al. (eds.), Symposium on the evolution of terrestrial vertebrates. Selected Symposia and Monographs V ZI, 4, Muchi, Modena, pp. 51–88.

    Google Scholar 

  23. Forbes, D.J., Kirschner, M.W. and Newport, J.W. (1983) Spontaneous formation of nuclear-like structure around bacteriophage DNA microinjected into Xenopus eggs. Cell 34, 13–23.

    Article  PubMed  CAS  Google Scholar 

  24. Gould, S.J. (1978) Ever Since Darwin. Burnett Books, London. pp. 179–185.

    Google Scholar 

  25. Gilson, P.R. and McFadden, G.I. (1998) Molecular, morphological and phylogenetic characterization of six chlorarachniophyte strains. Phycol. Res (in press).

    Google Scholar 

  26. Zauner, S., Fraunholz, M.J., Wastl, J., Penny, S., Cavalier-Smith, T., Maier, U-G, and Douglas, S. Aberrant telomeres, overlapping genes, and chloroplast protein-encoding functions in an unusually compact eukaryotic genome - the cryptomonad nucleomorph. Submitted

    Google Scholar 

  27. Gilson, P.R. and McFadden, G.I. (1996) The miniaturized nuclear genome of a eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proc. Natl. Acad. Sci. USA, 93, 7737–7742.

    Article  PubMed  CAS  Google Scholar 

  28. Ohno, S. (1972) So much ‘junk’ DNA in our genome. in H.H. Smith (ed.), Evolution of Genetic Systems. Brookhaven Symposium in Biology vol. 23, New York: Gordon and Breach, pp. 366–370.

    Google Scholar 

  29. Doolittle, W.F. & Sapienza, C. (1980) Selfish genes, phenotype paradigm and genome evolution. Nature 284, 601–603.

    Article  PubMed  CAS  Google Scholar 

  30. Orgel, L.C. and Crick, P.H.C. (1980) Selfish DNA: the ultimate parasite. Nature 284, 604–607.

    Article  PubMed  CAS  Google Scholar 

  31. Fraunholz, M.J., Moerschel, E. and Maier, U.-G. (1998) Chloroplast division protein FtsZ is encoded by nuclear equivalent in crtptomonads. Mol. Gen. Genet In press.

    Google Scholar 

  32. Morrall, S. and Greenwood, A.D. (1982) Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implication. J. Cell Sci 54, 311–328.

    Google Scholar 

  33. McKerracher, L. and Gibbs, S.P. (1981) Cell and nucleomorph division in the alga Cryptomonas. Can. J. Bot 60, 2440–2452.

    Article  Google Scholar 

  34. Schmidt-Nielsen, K. (1984) Scaling: Why is Animal Size so Important? Cambridge University Press.

    Book  Google Scholar 

  35. Huxley, J.S. (1972) Problems of Relative Growth 2nd ed. Dover, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cavalier-Smith, T., Beaton, M.J. (1999). The Skeletal Function of Non-Genic Nuclear DNA: New Evidence from Ancient Cell Chimaeras. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics