Skip to main content

Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues

  • Chapter
Porous Media: Theory and Experiments

Abstract

A mechano-electrochemical theory for charged hydrated soft tissues with multielectrolytes was developed based on the continuum mixture theory. The momentum equations for water and ions were derived in terms of a mechanochemical force (gradient of water chemical potential), electrochemical forces (gradient of Nernst potentials) and an electrical force (gradient of electrical potential). The theory was shown to be consistent with all existing specialized theories. Using this theory, some mechano-electrokinetic properties of charged isotropic tissues were studied. The well-known Hodgkin-Huxley equation for resting cell membrane potential was derived and the phenomenon of electro-osmotic flow in charged hydrated soft tissues was investigated. Analyses show that the tissue fixed charge density plays an important role in controlling the transport of water and ions in charged hydrated soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphasic thermomechanics with interfaces, Int. J. Engng. Sci. 32, 1717–1738.

    Article  Google Scholar 

  • Bowen, R. M.: 1980, Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci. 18, 1129–1148.

    Article  Google Scholar 

  • Coelho, D., Shapiro, M., Thovert, J. F. and Adler, P. M.: 1996, Electroosmotic phenomena in porous media, J. Colloid Interf. Sci. 181, 169–190.

    Article  Google Scholar 

  • Donnan, F. G.: 1924, The theory of membrane equilibria, Chem. Rev. 1, 73–90.

    Article  Google Scholar 

  • de Boer, R.: 1996, Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory, Appl. Mech. Rev. 49, 201–262.

    Article  Google Scholar 

  • de Groot, S. R. and Mazur, P.: 1984, Non-Equilibrium Theormodynamics, Dover, New York.

    Google Scholar 

  • Fair, J. C. and Osterle, J. F.: 1971, Reverse electrodialysis in charged capillary membranes, J. Chem. Phys. 54, 3307–3316.

    Article  Google Scholar 

  • Frank, E. H. and Grodzinsky, A. J.: 1987a, Cartilage electromechanics — I. Electrokinetic transduction and the effects of electrolyte ph and ionic strength, J. Biomech. 20, 615–627.

    Article  Google Scholar 

  • Frank, E. H. and Grodzinsky, A. J.: 1987b, Cartilage electromechanics — II. A continuum model of cartilage electrokinetics and correlation with experiments, J. Biomech. 20, 629–639.

    Article  Google Scholar 

  • Frank, E. H., Grodzinsky, A. J., Phillips, S. L. and Grimshaw, P. E.: 1990, Physicochemical and bioelectrical determinants of cartilage material properties, In: V. C. Mow, A. Ratcliffe and S. L.-Y. Woo (eds), Biomechanics of Diarthrodial Joints, Vol. 1, Springer-Verlag, New York, pp. 363–390.

    Google Scholar 

  • Grodzinsky, A. J.: 1990, Mechanical and electrical properties and their relevance to physiological processes, In: A. Maroudas and K. Kuettner (eds), Methods in Cartilage Research, Academic Press, San Diego, pp. 275–281.

    Google Scholar 

  • Gu, W. Y, Lai, W. M. and Mow, V. C.: 1993a, Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage, J. Biomech. 26, 709–723.

    Article  Google Scholar 

  • Gu, W. Y, Lai, W. M. and Mow, V. C: 1993b, Theoretical basis for measurements of cartilage fixed-charge density using streaming current and electro-osmosis effects, In: J. M. Tarbeil (ed.), Adv. Bioeng. ASME, Vol. 26, BED, New York, pp. 55–58.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1994, A generalized triphasic theory for multi-electrolyte transport in charged hydrated soft tissues, In: M. J. Askew (ed.), Adv. Bioeng. ASME, Vol. 28, BED, New York, pp. 217–218.

    Google Scholar 

  • Gu, W. Y, Lai, W. M. and Mow, V. C.: 1997, A triphasic analysis of negative osmotic flow through charged-hydrated soft tissues, J. Biomech. 30, 71–78.

    Article  Google Scholar 

  • Gu, W. Y, Lai, W. M. and Mow, V. C.: 1998, A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors, J. Biomech. Engng. 120, 169–180.

    Article  Google Scholar 

  • Heodug, W. K. and Wong, S-W.: 1996, Hydration swelling of water-absorbing rocks: a constitutive model, Int. J. Num. Anal. Methods Geomech. 20, 403–430.

    Article  Google Scholar 

  • Helfferich, F.: 1962, Ion Exchange, McGraw-Hill, New York.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F.: 1952a, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116, 473–496.

    Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F.: 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500–544.

    Google Scholar 

  • Huyghe, J. M. and Janssen, J. D.: 1997, Quadriphasic mechanics of swelling incompressible porous media, Int. J. Engng. Sci. 35, 793–802.

    Article  Google Scholar 

  • Katchalsky, A. and Curran, P. R: 1975, Nonequilibrium Thermodynamics in Biophysics, 4th edn, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Kedem, O. and Katchalsky, A.: 1961, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45, 143–179.

    Article  Google Scholar 

  • Lai, W. M., Hou, J. S. and Mow, V. C: 1991, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Engng. 113, 245–258.

    Article  Google Scholar 

  • Lai, W. M., Gu, W. and Mow, V. C.: 1994, Flows of electrolytes through charged hydrated biologic tissue, Appl. Mech. Rev. 47(part 2), 277–281.

    Article  Google Scholar 

  • Maroudas, A.: 1968, Physicochemical properties of cartilage in the light of ion exchange theory, Biophy. J. 8, 575–595.

    Article  Google Scholar 

  • Mow, V. C., Kuei, S. C., Lai, W. M. and Armstrong, C. G.: 1980, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, J. Biomech. Engng. 102, 73–84.

    Article  Google Scholar 

  • Nernst, W.: 1888, Zur Kinetik der Lösung Befindlichen Körper: Theorie der Diffusion, Z. Phys. Chem. 3, 613–637.

    Google Scholar 

  • Onsager, L.: 1931a, Reciprocal relations in irreversible processes. I, Phys. Rev. 37, 405–426.

    Article  Google Scholar 

  • Onsager, L.: 1931b, Reciprocal relations in irreversible processes. II, Phys. Rev. 38, 2265–2279.

    Article  Google Scholar 

  • Salzstein, R. A., Pollack, S. R. and Mak, A. F. T.: 1987, Electromechanical potentials in cortical bone-I. A continuum approach, J. Biomech. 20, 261–270.

    Article  Google Scholar 

  • Silberberg, A.: 1982, The mechanics and thermodynamics of separation flow through porous, molecularly disperse, solid media, Biorheology 19, 111–127.

    Google Scholar 

  • Teorell, T.: 1953, Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. Physicochem. 3, 305–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gu, W.Y., Lai, W.M., Mow, V.C. (1999). Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues. In: De Boer, R. (eds) Porous Media: Theory and Experiments. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4579-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4579-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5939-8

  • Online ISBN: 978-94-011-4579-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics