Skip to main content

Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids

  • Chapter
Porous Media: Theory and Experiments

Abstract

A thermo-chemo-electro-mechanical formulation of quasi-static finite deformation of swelling incompressible porous media is derived from a mixture theory including the volume fraction concept. The model consists of an electrically charged porous solid saturated with an ionic solution. Incompressible deformation is assumed. The mixture as a whole is assumed locally electroneutral. Different constituents following different kinematic paths are defined: solid, fluid, anions, cations and neutral solutes. Balance laws are derived for each constituent and for the mixture as a whole. A Lagrangian form of the second law of thermodynamics for incompressible porous media is used to derive the constitutive restrictions of the medium. The material properties are shown to be contained in one strain energy function and a matrix of frictional tensors. A principle of reversibility results from the constitutive restrictions. Existing theories of swelling media should be evaluated with respect to this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941), 155–164.

    Article  Google Scholar 

  2. Staverman, A. J.: Non-equilibrium thermodynamics of membrane processes, Trans. Faraday Soc. 48 (1952), 176–185.

    Article  Google Scholar 

  3. Coleman, B. D. and Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech Anal. 13 (1963), 167–178.

    Article  Google Scholar 

  4. Biot, M.: Theory of finite deformation of porous solids, Indiana University Math. J. 21 (1972), 597–620.

    Article  Google Scholar 

  5. Bowen, R. M.: Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci. 18 (1980), 1129–1148.

    Article  Google Scholar 

  6. Richards, E. G.: An Introduction to Physical Properties of Large Molecules in Solution, Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  7. Lai, W. M., Hou, J. S. and Mow, V. C.: A triphasic theory for the swelling and deformation behaviours of articular cartilage, J. Biomech. Engng. 113 (1991), 245–258.

    Article  Google Scholar 

  8. Sherwood, J. D.: Biot poroelasticity of a chemically active shale, Proc. Roy. Soc. London A 440 (1993), 367–377.

    Google Scholar 

  9. Gu, W. Y., Lai, W. M. and Mow, V. C.: Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage, J. Biomech. 26 (1993), 709–723.

    Article  Google Scholar 

  10. Snijders, H., Huyghe, J. M. and Janssen, J. D.: Triphasic finite element model for swelling porous media, Int. J. Num. Meth. Fluids 20 (1995), 1039–1046.

    Article  Google Scholar 

  11. Grodzinsky, A. J., Roth, V., Meyers, E., Grossman, W. D. and Mow, V. C.: The significance of electromechanical and osmotic forces in the non-equilibrium swelling behaviour of articular cartilage in tension, J. Biomech. Engng. 103 (1981), 221–231.

    Article  Google Scholar 

  12. Bluhm, J. and de Boer R.: Effective stresses — a clarification, Arch. Appl. Mech. 66 (1996), 479–492.

    Google Scholar 

  13. Drost, M. R., Willems P., Snijders, H., Huyghe, J. M., Janssen, J. D. and Huson, A.: Confined compression of canine annulus fibrosus under chemical and mechanical loading, J. Biomech. Engng. 117 (1995), 390–396.

    Article  Google Scholar 

  14. Oomens, C. W. J., Heus, H. de, Huyghe, J. M., Nelissen, L. and Janssen, J. D.: Validation of the triphasic mixture theory for a mimic of intervertebral disk tissue, Biomimetics 3 (1994), 171–185.

    Google Scholar 

  15. Heidug, W. K. and Wong, S.-W.: Hydration swelling of water absorbing rocks: a constitutive model, Int. J. Num. Anal. Meth. Geomech. 20 (1996), 403–430.

    Article  Google Scholar 

  16. Yeung, A. T. and Mitchell, J. K.: Coupled fluid, electrical and chemical flows in soil, Geotechnique 43 (1993), 121.

    Article  Google Scholar 

  17. Oort, E. van, Hale, A. H., Mody, F. K. and Sanjit, R.: Critical parameters in modelling the chemical aspects of borehole stability in shales and in designing improved water-based shale drilling fluids, Society of Petroleum Engineers, paper 28309, presented at the SPE 69th Annual Technical Conference and Exhibition, New Orleans, La., September, 1994.

    Google Scholar 

  18. Vankan, W. J., Huyghe, J. M., Janssen, J. D. and Huson, A.: Poroelasticity of saturated solids with an application to blood perfusion, Int. J. Engng. Sci. 34 (1996), 1019–1031.

    Article  Google Scholar 

  19. Mueller, I.: Thermodynamics, Pitman, Boston, 1985.

    Google Scholar 

  20. Wilmansky, K.: Lagrangian model of two-phase porous material, J. Non-Equil. Thermodyn. 20 (1995), 50–77.

    Google Scholar 

  21. Woods, L. C.: Thermodynamic inequalities in continuum mechanics, IMA J. Appl. Math. 29 (1982), 221–246.

    Article  Google Scholar 

  22. Simon, B. R., Liable, J. P., Pflaster, D., Yuan, Y. and Krag, M. H.: A poroelastic finite element formulation including transport and swelling in soft tissue structures, J. Biomech. Engng. 118 (1996), 1–9.

    Article  Google Scholar 

  23. Huyghe, J. M. and Janssen, J. D.: Quadriphasic theory of swelling incompressible porous media, Int. J. Engng. Sci. 35 (1997), 793–802.

    Article  Google Scholar 

  24. Frijns, A. J. H., Huyghe, J. M. and Janssen, J. D.: A validation of the quadriphasic mixture theory for intervertebral disc tissue, Int. J. Engng. Sci. 35 (1997), 1419–1429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huyghe, J.M., Janssen, J.D. (1999). Thermo-Chemo-Electro-Mechanical Formulation of Saturated Charged Porous Solids. In: De Boer, R. (eds) Porous Media: Theory and Experiments. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4579-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4579-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5939-8

  • Online ISBN: 978-94-011-4579-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics