Skip to main content

Parallel Numerical Simulation of Air Pollution In Southern Italy

  • Chapter
Large Scale Computations in Air Pollution Modelling

Part of the book series: NATO Science Series ((ASEN2,volume 57))

Abstract

In this paper we present the Parallel Naples Airshed Model (PNAM),a parallel software package for the numerical simulation of air pollution episodes on urban scale domains, using MIMD distributed-memory machines. This is a first result of a research activity aimed at developing a system software to simulate air pollution episodes in the Campania Region, in Southern Italy. PNAM is based on an Eulerian model of the transport and photochemical transformations of air pollutants and uses a time-splitting approach, which separates the advection from the (coupled) diffusion and chemistry phenomena. The parallel implementation is based on grid partitioning and the use of dynamic load balancing techniques is currently under experiment. It is written in Fortran 90 and is based on the parallel Runtime System Library (RSL) to implement domain decomposition, data communication and dynamic load balancing. Numerical experiments have been carried out on a realistic test case, using an IBM SP, to evaluate the parallel performance of PNAM. Execution times, speedup and efficiency have been measured, obtaining a speedup of more than 7 on 12 processors. Preliminary results obtained with a dynamic load balancing strategy have been also analyzed, gaining suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barone, G., D’Ambra, P., di Serafino, D., Giunta, G. and Riccio, A. (1998), Numerical simulation of air pollution phenomena in the Neapolitan urban area (Southern Italy): First Experiences, in M. Griebel, O. P. Iliev, P. O. Margenov, P. S. Vassilevski (eds.), Large-Scale Computations of Engineering and Environmental Problems, Vieweg & Sons, Braunschweig, Wiesbaden, pp. 128–135.

    Google Scholar 

  2. Barone, G., D’Ambra, P., di Serafino, D., Giunta, G. and Riccio, A. (1998), A Comparison of Numerical Methods for Solving Diffusion-Reaction Equations in Air Quality Models, CPS Tech. Rep. TR98–3, Center for Research on Parallel Computing and Supercomputers (CPS-CNR), Naples, Italy.

    Google Scholar 

  3. Barone, G., D’Ambra, P., di Serafino, D., Giunta, G., Murli, A. and Riccio, A. (1998), Application of a Parallel Photochemical Air Quality Model to the Campania Region (Southern Italy), in B. Sportisse (ed.), Proceedings of the International Conference on Air Pollution Modelling and Simulation APMS’98, Champs-sur-Marne (Paris), October 26–29,1998, ENPS and INRIA, Paris, pp. 57–70.

    Google Scholar 

  4. Blom, J. G., Lioen, W. M. and Verwer, J. G. (1998), HPCN and Air Quality Modelling, CWI Tech. Rep. MAS-R9801, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

    Google Scholar 

  5. Bornstein, R., Thunis, P., Grossi, P. and Schayes, P. (1996), Topographic Vorticity-Mode Mesoscale-ß (TVM) Model. Part II: Evaluation, J. Appl. Meteor., 35, pp. 1824–1834.

    Article  Google Scholar 

  6. Brown, P. N., Byrne, G. D. and Hindmarsh, A. C. (1989), VODE: a Variable Coefficient ODE Solver, SIAM J. Sci. Stat. Comput., 10, pp. 1038–1051.

    Article  Google Scholar 

  7. Brown, J., Wasniewski, J. and Zlatev, Z. (1995), Running Air Pollution Models on Massively Parallel Machines, Parallel Computing, 21, pp. 971–991.

    Article  Google Scholar 

  8. Bruegge, B., Riedel, E., Russell, A., Segall, E. and Steenkiste, P. (1995), Heterogeneous Distributed Environmental Modeling, SIAM News,2 28.

    Google Scholar 

  9. Dabdub, D. and Manohar, R. (1997), Performance and Portability of an Air Quality Model., Parallel Computing, 23, pp. 2187–2200.

    Article  Google Scholar 

  10. Dabdub, D. and Seinfeld, J. H.(1996), Parallel Computation in Atmospheric Chemical Modeling, Parallel Computing, 22, pp. 111–130.

    Article  Google Scholar 

  11. D’ Ambra, P., di Serafino, D., Giunta, G. and Riccio, A. (1997), Parallel Numerical Simulations of Reacting Flows in Air Quality Models, in P. Schiano, A. Ecer, J. Periaux, N. Safotuka (eds.), Parallel Computational Fluid Dynamics,Algorithms and Results Using Advanced Computers, Elsevier, Barking, England, pp. 116–123.

    Google Scholar 

  12. Elbern, H. (1997), Parallelization and Load Balancing of a Comprehensive Atmospheric Chemistry Transport Model, Atmos. Environ., 31, pp. 3561–3574.

    Article  CAS  Google Scholar 

  13. Harley, R. A., Russell, A. G., McRae, G. J., Cass, G. R. and Seinfeld, J. H (1993), Photochemical Modeling of the Southern California Air Quality Study, Environ. Sci. Technol., 27, pp. 378–388.

    Article  CAS  Google Scholar 

  14. Hundsdorfer, W., Koren, B., van Loon, M. and Verwer, J. G. (1995), A Positive finite-Difference Advection Scheme, J. of Comput. Phys., 117, pp. 35–46.

    Article  Google Scholar 

  15. Kessler, Ch., Blom, J. G. and Verwer, J. G. (1995), Porting a 3D-Model for the Transport of Reactive Air Polluttants to the Parallel Machine T3D, CWI Tech. Rep. NM-R9519,Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

    Google Scholar 

  16. Kim, J. and Cho, S. Y. (1997), Computation Accuracy and Efficiency of the Time-Splitting Method in Solving Atmospheric Transport/Chemistry Equations, Atmos. Environ., 31, pp. 2215–2214.

    Article  CAS  Google Scholar 

  17. Lurmann, F. W., Carter, W. P. L. and Coyner, L. A. (1987), A Surrogate Species Chemical Reaction Mechanism for Urban-Scale Air Quality Simulation Models. 1. Adaptation of the Mechanism. II. Guidelines for Using the Mechanism, Tech. Rep. EPA/600/3–87/014, U.S. Environmental Protection Agency and Statewide Air Pollution Research Center.

    Google Scholar 

  18. McRae, G. J., Goodin, W. R. and Seinfeld, J. H. (1982), Mathematical Modeling of Photochemical Air Pollution, Environmental Quality Laboratory 18,California Institute of Technology, Pasadena, CA, USA.

    Google Scholar 

  19. Michalakes, J. (1994), A Parallel Runtime System Library for Regular Grid Finite Difference Models Using Multiple Nests, Tech. Rep. ANL/MCS-TM-197, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA.

    Google Scholar 

  20. Michalakes, J. (1997), MM90: A Scalable Parallel Implementation of the Penn State/NCAR Mesoscale Model (MM5), Parallel Computing, 23, pp. 2173–2186.

    Article  Google Scholar 

  21. Sandu, A., Verwer, J. G., van Loon, M., Carmichael, G. R., Potra, F., Dabdub, D. and Seinfeld, J. H. (1997), Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems I: Implicit versus Explicit, Atmos. Environ., 31, pp. 3151–3166.

    Article  CAS  Google Scholar 

  22. Sandu, A., Verwer, J. G., van Loon, M., Carmichael, G. R., Potra, F., Dabdub, D. and Seinfeld, J. H. (1997), Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems II: Rosenbrock Solvers, Atmos. Environ., 31, pp. 3459–3472.

    Article  CAS  Google Scholar 

  23. Schayes, G., Thunis, P. and Bornstein, R. (1996), Topographic VorticityMode Mesoscale-0 (TVM) Model. Part I: Formulation, J. Appl. Meteor., 35, pp. 1815–1823.

    Article  Google Scholar 

  24. Scheffe, R. D. and Morris, R. E. (1993), A Review of the Development and Application of the Urban Airshed Model Atmos. Environ., 27, pp. 23–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barone, G., Murli, A., Riccio, A., D’Ambra, P., Di Serafino, D., Giunta, G. (1999). Parallel Numerical Simulation of Air Pollution In Southern Italy. In: Zlatev, Z., et al. Large Scale Computations in Air Pollution Modelling. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4570-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4570-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5678-3

  • Online ISBN: 978-94-011-4570-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics